메뉴 건너뛰기




Volumn 20, Issue 7, 2011, Pages 935-939

Application of neural networks for detecting erroneous tax reports from construction companies

Author keywords

Construction company; Neural networks; Pattern classification; Tax report

Indexed keywords

AUTOMATIC DETECTION; AUTOMATIC MODELS; CONSTRUCTION COMPANIES; LEARNING VECTOR QUANTIZATION; MODEL YIELDS; MULTI-LAYER PERCEPTRONS; NEURAL NETWORK APPLICATION; NORTHERN TAIWAN; RECOGNITION RATES; TAX REPORT;

EID: 80052832794     PISSN: 09265805     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.autcon.2011.03.011     Document Type: Article
Times cited : (14)

References (38)
  • 1
    • 80052863719 scopus 로고    scopus 로고
    • National Tax Administration Of Northern Taiwan Taiwan
    • National Tax Administration of Northern Taiwan http://www.ntx.gov.tw/ Index.aspx 2009 Taiwan
    • (2009)
  • 2
    • 41849141142 scopus 로고    scopus 로고
    • KNN based knowledge-sharing model for severe change order disputes in construction
    • J.-H. Chen KNN based knowledge-sharing model for severe change order disputes in construction Automation in Construction 17 6 2008 773 779
    • (2008) Automation in Construction , vol.17 , Issue.6 , pp. 773-779
    • Chen, J.-H.1
  • 3
    • 34547795167 scopus 로고    scopus 로고
    • Hybrid ANN-CBR model for disputed change orders in construction projects
    • DOI 10.1016/j.autcon.2007.03.003, PII S0926580507000428
    • J.-H. Chen, and S.C. Hsu Hybrid ANN-CBR model for disputed change orders in construction projects Automation in Construction 17 1 2007 56 64 (Pubitemid 47225205)
    • (2007) Automation in Construction , vol.17 , Issue.1 , pp. 56-64
    • Chen, J.-H.1    Hsu, S.C.2
  • 4
    • 67650341000 scopus 로고    scopus 로고
    • Construction litigation prediction system using any colony optimization
    • T. Pulket, and D. Arditi Construction litigation prediction system using any colony optimization Construction Management and Economics 27 3 2009 241 251
    • (2009) Construction Management and Economics , vol.27 , Issue.3 , pp. 241-251
    • Pulket, T.1    Arditi, D.2
  • 6
    • 0035772309 scopus 로고    scopus 로고
    • A model for construction project budget and schedule performances using fuzzy data
    • D.K.H. Chua, Y.C. Kog, and P.K. Loh A model for construction project budget and schedule performances using fuzzy data Civil Engineering and Environmental Systems 18 4 2001 303 329 (Pubitemid 35218892)
    • (2001) Civil Engineering and Environmental Systems , vol.18 , Issue.4 , pp. 303-329
    • Chua, D.K.H.1    Kog, Y.C.2    Loh, P.K.3
  • 8
    • 70350064572 scopus 로고    scopus 로고
    • Model for predicting financial performance if development and construction corporations
    • H.L. Chen Model for predicting financial performance if development and construction corporations Journal of Construction Engineering and Management 135 11 2009 1190 1200
    • (2009) Journal of Construction Engineering and Management , vol.135 , Issue.11 , pp. 1190-1200
    • Chen, H.L.1
  • 9
    • 77955583770 scopus 로고    scopus 로고
    • Developing an SVM-based risk-hedging prediction model for construction material suppliers
    • J.-H. Chen, and J.-Z. Lin Developing an SVM-based risk-hedging prediction model for construction material suppliers Automation in Construction 19 6 2010 702 708
    • (2010) Automation in Construction , vol.19 , Issue.6 , pp. 702-708
    • Chen, J.-H.1    Lin, J.-Z.2
  • 10
    • 78751628316 scopus 로고    scopus 로고
    • A rule extraction based approach in predicting derivative use for financial risk hedging by construction companies
    • J.-H. Chen, L.-R. Yang, M.-C. Su, and J.-Z. Lin A rule extraction based approach in predicting derivative use for financial risk hedging by construction companies Expert Systems with Applications 37 9 2010 6510 6514
    • (2010) Expert Systems with Applications , vol.37 , Issue.9 , pp. 6510-6514
    • Chen, J.-H.1    Yang, L.-R.2    Su, M.-C.3    Lin, J.-Z.4
  • 12
    • 13944275602 scopus 로고    scopus 로고
    • Contractor performance prediction model for the United Kingdom construction contractor: Study of logistic regression approach
    • DOI 10.1061/(ASCE)0733-9364(2004)130:5(691)
    • C.H. Wong Contractor performace prediction model for the United Kingdom construction contractor: study of logistic regression approach Journal of Construction Engineering and Management 130 5 2004 691 698 (Pubitemid 40265335)
    • (2004) Journal of Construction Engineering and Management , vol.130 , Issue.5 , pp. 691-698
    • Wong, C.H.1
  • 13
    • 33751261580 scopus 로고    scopus 로고
    • Classifying construction contractors using unsupervised-learning neural networks
    • DOI 10.1061/(ASCE)0733-9364(2006)132:12(1242), 001612QCO
    • A.M. Elazouni Classifying construction contractors using unsupervised-learning neural networks Journal of Construction Engineering and Management 132 12 2006 1242 1253 (Pubitemid 44794264)
    • (2006) Journal of Construction Engineering and Management , vol.132 , Issue.12 , pp. 1242-1253
    • Elazouni, A.M.1
  • 16
    • 41849141142 scopus 로고    scopus 로고
    • KNN based knowledge sharing model for severe change order disputes in construction
    • J.-H. Chen KNN based knowledge sharing model for severe change order disputes in construction Automation in Construction 17 6 2008 773 779
    • (2008) Automation in Construction , vol.17 , Issue.6 , pp. 773-779
    • Chen, J.-H.1
  • 17
    • 34547795167 scopus 로고    scopus 로고
    • Hybrid ANN-CBR model for disputed change orders in construction projects
    • DOI 10.1016/j.autcon.2007.03.003, PII S0926580507000428
    • J.-H. Chen, and S.C. Hsu Hybrid ANN-CBR model for disputed change orders in construction projects Automation in Construction 17 1 2007 56 64 (Pubitemid 47225205)
    • (2007) Automation in Construction , vol.17 , Issue.1 , pp. 56-64
    • Chen, J.-H.1    Hsu, S.C.2
  • 18
    • 26444564627 scopus 로고    scopus 로고
    • Neuro-fuzzy network for the classification of buried pipe defects
    • DOI 10.1016/j.autcon.2005.02.005, PII S0926580505000440
    • S.K. Sinha, and P.W. Fiequth Neuro-fuzzy network for the classification of buried pipe defects Automation in Construction 15 1 2006 73 83 (Pubitemid 41436347)
    • (2006) Automation in Construction , vol.15 , Issue.1 , pp. 73-83
    • Sinha, S.K.1    Fieguth, P.W.2
  • 19
    • 48549106337 scopus 로고    scopus 로고
    • On automatic classification for agricultural products web pages in Chinese based on LVQ network and ontology
    • C. Wang, Z. Fu, J. Zhang, L. Hu, F. Wang, and X. Zhang On automatic classification for agricultural products web pages in Chinese based on LVQ network and ontology Journal of Computational Information Systems 4 3 2008 971 976
    • (2008) Journal of Computational Information Systems , vol.4 , Issue.3 , pp. 971-976
    • Wang, C.1    Fu, Z.2    Zhang, J.3    Hu, L.4    Wang, F.5    Zhang, X.6
  • 20
    • 28444485615 scopus 로고    scopus 로고
    • Structure-based classification of active and inactive estrogenic compounds by decision tree, LVQ and kNN methods
    • DOI 10.1016/j.chemosphere.2005.04.115, PII S0045653505006879
    • A. Asikainen, M. Kolehmainen, J. Ruuskanen, and K. Tuppurainen Structure-based classification of active and inactive estrogenic compounds by decision tree, LVQ and kNN methods Chemosphere 62 4 2006 658 673 (Pubitemid 41737399)
    • (2006) Chemosphere , vol.62 , Issue.4 , pp. 658-673
    • Asikainen, A.1    Kolehmainen, M.2    Ruuskanen, J.3    Tuppurainen, K.4
  • 21
    • 33751261127 scopus 로고    scopus 로고
    • Decision tree modeling using integrated multilevel stochastic networks
    • DOI 10.1061/(ASCE)0733-9364(2006)132:12(1254), 010612QCO
    • M. Moussa, J. Ruwanpura, and G. Jerqeas Decision tree modeling using integrated multilevel stochastic networks Journal of Construction Engineering and Management 132 12 2006 1254 1266 (Pubitemid 44794265)
    • (2006) Journal of Construction Engineering and Management , vol.132 , Issue.12 , pp. 1254-1266
    • Moussa, M.1    Ruwanpura, J.2    Jergeas, G.3
  • 22
    • 26644445248 scopus 로고    scopus 로고
    • Predicting the outcome of construction litigation using boosted decision trees
    • DOI 10.1061/(ASCE)0887-3801(2005)19:4(387)
    • D. Arditi, and T. Pulket Predicting the outcome of construction litigation using boosted decision trees Journal of Computing in Civil Engineering 19 4 2005 387 393 (Pubitemid 41441369)
    • (2005) Journal of Computing in Civil Engineering , vol.19 , Issue.4 , pp. 387-393
    • Arditi, D.1    Pulket, T.2
  • 26
    • 33744584654 scopus 로고
    • Introduction of decision trees
    • J.R. Quinlan Introduction of decision trees Machine Learning 1 1986 81 106
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 29
    • 0028658484 scopus 로고
    • Use of neural networks as medical diagnosis expert systems
    • M.-C. Su Use of neural networks as medical diagnosis expert systems Computers in Biology and Medicine 24 6 1994 419 429
    • (1994) Computers in Biology and Medicine , vol.24 , Issue.6 , pp. 419-429
    • Su, M.-C.1
  • 30
    • 0032143769 scopus 로고    scopus 로고
    • A neuro-fuzzy approach to speech recognition without time alignment
    • PII S01650114X96003752
    • M.-C. Su, C.T. Hsieh, and C.C. Chin A neuro-fuzzy approach to speech recognition without time alignment Fuzzy Sets and Systems 98 1 1998 33 41 (Pubitemid 128654912)
    • (1998) Fuzzy Sets and Systems , vol.98 , Issue.1 , pp. 33-41
    • Su, M.-C.1    Hsieh, C.-T.2    Chin, C.-C.3
  • 36
    • 0026927202 scopus 로고
    • Fuzzy min-max neural networks-Part 1: Classification
    • P.K. Simpson Fuzzy min-max neural networks-Part 1: classification IEEE Transactions on Neural Networks 3 5 1992 776 786
    • (1992) IEEE Transactions on Neural Networks , vol.3 , Issue.5 , pp. 776-786
    • Simpson, P.K.1
  • 38
    • 0029242750 scopus 로고
    • A method for fuzzy rules extraction directly from numerical data and its application to pattern classification
    • S. Abe, and M.-S. Lan A method for fuzzy rules extraction directly from numerical data and its application to pattern classification IEEE Trans. on Neural Networks 3 1 1995 18 28
    • (1995) IEEE Trans. on Neural Networks , vol.3 , Issue.1 , pp. 18-28
    • Abe, S.1    Lan, M.-S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.