메뉴 건너뛰기




Volumn 67, Issue 3, 2011, Pages 896-905

Prediction-Based Structured Variable Selection through the Receiver Operating Characteristic Curves

Author keywords

Area under the curve; Disease screening; Hierarchical variable selection; ROC curve; Support vector machine

Indexed keywords

DIAGNOSIS; STRUCTURAL DESIGN; SUPPORT VECTOR MACHINES;

EID: 80052790888     PISSN: 0006341X     EISSN: 15410420     Source Type: Journal    
DOI: 10.1111/j.1541-0420.2010.01533.x     Document Type: Article
Times cited : (15)

References (31)
  • 2
    • 67649214465 scopus 로고    scopus 로고
    • Penalized SVM: A R-package for feature selection SVM classification
    • Becker, N., Werft, W., Toedt, G., Lichter, P., and Benner, A. (2009). Penalized SVM: A R-package for feature selection SVM classification. Bioinformatics 25, 1711-1712.
    • (2009) Bioinformatics , vol.25 , pp. 1711-1712
    • Becker, N.1    Werft, W.2    Toedt, G.3    Lichter, P.4    Benner, A.5
  • 4
    • 39849093135 scopus 로고    scopus 로고
    • The skill plot: A graphical technique for evaluating continuous diagnostic tests
    • Briggs, M. and Zaretzki, R. (2008). The skill plot: A graphical technique for evaluating continuous diagnostic tests. Biometrics 63, 250-261.
    • (2008) Biometrics , vol.63 , pp. 250-261
    • Briggs, M.1    Zaretzki, R.2
  • 6
    • 80053264999 scopus 로고
    • How biased is the apparent error rate of a prediction rule
    • Efron, B. (1986). How biased is the apparent error rate of a prediction rule Journal of the American Statistical Association 81, 461-470.
    • (1986) Journal of the American Statistical Association , vol.81 , pp. 461-470
    • Efron, B.1
  • 7
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association 96, 1348-1360.
    • (2001) Journal of the American Statistical Association , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 8
    • 85153238895 scopus 로고    scopus 로고
    • Structured Clinical Interview for DSM-IV Axis I Disorders, Patient Edition (SCID-I/P, Version 2.0, 9/98 revision), Biometrics Research Department, New York State Research Institute
    • First, M. B., Spitzer, R. L., Gibbon, M., and Williams, J. (1998). Structured Clinical Interview for DSM-IV Axis I Disorders, Patient Edition (SCID-I/P, Version 2.0, 9/98 revision), Biometrics Research Department, New York State Research Institute.
    • (1998)
    • First, M.B.1    Spitzer, R.L.2    Gibbon, M.3    Williams, J.4
  • 9
    • 3543109140 scopus 로고    scopus 로고
    • A feature selection Newton method for support vector machine classification
    • Fung, G. and Mangasarian, O. L. (2004). A feature selection Newton method for support vector machine classification. Computational Optimization and Applications 28, 185-202.
    • (2004) Computational Optimization and Applications , vol.28 , pp. 185-202
    • Fung, G.1    Mangasarian, O.L.2
  • 10
    • 45949121097 scopus 로고
    • Non-parametric analysis of a generalized regression model. The maximum rank correlation estimator
    • Han, A. K. (1987). Non-parametric analysis of a generalized regression model. The maximum rank correlation estimator. Journal of Economics 35, 303-316.
    • (1987) Journal of Economics , vol.35 , pp. 303-316
    • Han, A.K.1
  • 11
    • 85153266137 scopus 로고    scopus 로고
    • On Briggs and Zaretzki: The Skill Plot: A graphical technique for evaluating continuous diagnostic tests
    • Hand, D. (2008). On Briggs and Zaretzki: The Skill Plot: A graphical technique for evaluating continuous diagnostic tests. Biometrics 63, 259.
    • (2008) Biometrics , vol.63 , pp. 259
    • Hand, D.1
  • 13
    • 15044357936 scopus 로고    scopus 로고
    • Survival model predictive accuracy and ROC curves
    • Heagerty, P. J. and Zheng, Y. (2005). Survival model predictive accuracy and ROC curves. Biometrics 61, 92-105.
    • (2005) Biometrics , vol.61 , pp. 92-105
    • Heagerty, P.J.1    Zheng, Y.2
  • 14
    • 66249102619 scopus 로고    scopus 로고
    • A group bridge approach for variable selection
    • Huang, J., Ma, S., Xie, H., and Zhang, C. (2009). A group bridge approach for variable selection. Biometrika 96, 339-355.
    • (2009) Biometrika , vol.96 , pp. 339-355
    • Huang, J.1    Ma, S.2    Xie, H.3    Zhang, C.4
  • 15
    • 48849101115 scopus 로고    scopus 로고
    • A Bahadur representation of the linear support vector machine
    • Koo, K., Lee, Y., Kim, Y., and Park, C. (2008). A Bahadur representation of the linear support vector machine. Journal of Machine Learning Research 9, 1343-1368.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 1343-1368
    • Koo, K.1    Lee, Y.2    Kim, Y.3    Park, C.4
  • 16
    • 85153210980 scopus 로고    scopus 로고
    • Assessing psychosis screeners among underserved urban primary care patients
    • In, National Alliance for Research on Schizophrenia and Depression (NARSAD), October 17, 2003.
    • Lewis-Fernández, R. (2003). Assessing psychosis screeners among underserved urban primary care patients. In Proceedings of the 15th Annual Scientific Symposium, National Alliance for Research on Schizophrenia and Depression (NARSAD), October 17, 2003.
    • (2003) Proceedings of the 15th Annual Scientific Symposium
    • Lewis-Fernández, R.1
  • 17
    • 28944437658 scopus 로고    scopus 로고
    • Regularized ROC method for disease classification and biomarker selection with microarray data
    • Ma, S. and Huang, J. (2005). Regularized ROC method for disease classification and biomarker selection with microarray data. Bioinformatics 21, 4356-4362.
    • (2005) Bioinformatics , vol.21 , pp. 4356-4362
    • Ma, S.1    Huang, J.2
  • 18
    • 34548463550 scopus 로고    scopus 로고
    • Combining multiple markers for classification using ROC
    • Ma, S. and Huang, J. (2007). Combining multiple markers for classification using ROC. Biometrics 63, 751-757.
    • (2007) Biometrics , vol.63 , pp. 751-757
    • Ma, S.1    Huang, J.2
  • 19
    • 31744447672 scopus 로고    scopus 로고
    • An ROC-type measure of diagnostic accuracy when the gold standard is continuous-scale
    • Obuchowski, N. A. (2006). An ROC-type measure of diagnostic accuracy when the gold standard is continuous-scale. Statistics in Medicine 25, 481-493.
    • (2006) Statistics in Medicine , vol.25 , pp. 481-493
    • Obuchowski, N.A.1
  • 21
    • 30944468728 scopus 로고    scopus 로고
    • Evaluating technologies for classification and prediction in medicine
    • Pepe, M. S. (2005). Evaluating technologies for classification and prediction in medicine. Statistics in Medicine 24, 3687-3696.
    • (2005) Statistics in Medicine , vol.24 , pp. 3687-3696
    • Pepe, M.S.1
  • 22
    • 33645072705 scopus 로고    scopus 로고
    • Combining predictors for classification using the area under the receiver operating characteristic curve
    • Pepe, M. S., Cai, T., and Longton, G. (2006). Combining predictors for classification using the area under the receiver operating characteristic curve. Biometrics 62, 221-229.
    • (2006) Biometrics , vol.62 , pp. 221-229
    • Pepe, M.S.1    Cai, T.2    Longton, G.3
  • 23
    • 24944535753 scopus 로고    scopus 로고
    • Scaling of true and apparent ROC AUC with number of observations and number of variables
    • Pinsky, P. (2005). Scaling of true and apparent ROC AUC with number of observations and number of variables. Communications in Statistics: Simulation and Computation 34, 771-781.
    • (2005) Communications in Statistics: Simulation and Computation , vol.34 , pp. 771-781
    • Pinsky, P.1
  • 24
    • 0023890867 scopus 로고
    • Measuring the accuracy of diagnostic systems
    • Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science 240, 1285-1293.
    • (1988) Science , vol.240 , pp. 1285-1293
    • Swets, J.A.1
  • 26
    • 0003267918 scopus 로고    scopus 로고
    • GACV for support vector machines, or, another way to look at margin-like quantities
    • In, A. J. Smola, P. Bartlett, B. Schölkopf, and D. Schurmans (eds), Cambridge, Massachusetts: MIT Press.
    • Wahba, G., Lin, Y., and Zhang, H. (2000). GACV for support vector machines, or, another way to look at margin-like quantities. In Advances in Large Margin Classifiers, A. J. Smola, P. Bartlett, B. Schölkopf, and D. Schurmans (eds), 297-309. Cambridge, Massachusetts: MIT Press.
    • (2000) Advances in Large Margin Classifiers , pp. 297-309
    • Wahba, G.1    Lin, Y.2    Zhang, H.3
  • 27
    • 66249113503 scopus 로고    scopus 로고
    • Hierarchically penalized Cox regression with grouped variables
    • Wang, S., Nan, B., Zhou, N., and Zhu, J. (2009). Hierarchically penalized Cox regression with grouped variables. Biometrika 96, 307-322.
    • (2009) Biometrika , vol.96 , pp. 307-322
    • Wang, S.1    Nan, B.2    Zhou, N.3    Zhu, J.4
  • 28
    • 36849023833 scopus 로고    scopus 로고
    • An efficient variable selection approach for analyzing designed experiments
    • Yuan, M. and Lin, Y. (2007). An efficient variable selection approach for analyzing designed experiments. Technometrics 49, 430-439.
    • (2007) Technometrics , vol.49 , pp. 430-439
    • Yuan, M.1    Lin, Y.2
  • 29
    • 77955322588 scopus 로고    scopus 로고
    • Structured variable selection and estimation
    • Yuan, M., Joseph, R., and Zou, H. (2009). Structured variable selection and estimation. Annals of Applied Statistics 3, 1738-1757.
    • (2009) Annals of Applied Statistics , vol.3 , pp. 1738-1757
    • Yuan, M.1    Joseph, R.2    Zou, H.3
  • 30
    • 30344438839 scopus 로고    scopus 로고
    • Gene selection using support vector machine with non-convex penalty
    • Zhang, H., Ahn, J., Lin, X., and Park, C. (2006). Gene selection using support vector machine with non-convex penalty. Bioinformatics 22, 88-95.
    • (2006) Bioinformatics , vol.22 , pp. 88-95
    • Zhang, H.1    Ahn, J.2    Lin, X.3    Park, C.4
  • 31
    • 51049104549 scopus 로고    scopus 로고
    • One-step sparse estimates in nonconcave penalized likelihood models
    • Zou, H. and Li, R. (2008). One-step sparse estimates in nonconcave penalized likelihood models. Annals of Statistics 36, 1509-1533.
    • (2008) Annals of Statistics , vol.36 , pp. 1509-1533
    • Zou, H.1    Li, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.