메뉴 건너뛰기




Volumn 42, Issue 12, 2011, Pages 1051-1058

Fault diagnosis on bottle filling plant using genetic-based neural network

Author keywords

Back propagation algorithm; Bottle filling plant; Fault diagnosis; Genetic algorithm; Neural network; Pneumatic

Indexed keywords

ATMOSPHERIC PRESSURE; BACKPROPAGATION ALGORITHMS; BOTTLES; FAULT DETECTION; FILLING; GENETIC ALGORITHMS; GRAPHICAL USER INTERFACES; PNEUMATICS; PROBLEM SOLVING;

EID: 80052732209     PISSN: 09659978     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.advengsoft.2011.07.004     Document Type: Article
Times cited : (20)

References (40)
  • 1
    • 0033689605 scopus 로고    scopus 로고
    • Genetic algorithms for feature selection in machine condition monitoring with vibration signals
    • L.B. Jack, and A.K. Nandi Genetic algorithms for feature selection in machine condition monitoring with vibration signals IEE Proc Vision, Image, Signal Process 147 2000 205 212
    • (2000) IEE Proc Vision, Image, Signal Process , vol.147 , pp. 205-212
    • Jack, L.B.1    Nandi, A.K.2
  • 2
    • 37249005677 scopus 로고    scopus 로고
    • A hybrid neural network model for rule generation and its application to process fault detection and diagnosis
    • DOI 10.1016/j.engappai.2006.06.007, PII S0952197606001151
    • S.C. Tan, C.P. Lim, and M.V.C. Rao A hybrid neural network model for rule generation and its application to process fault detection and diagnosis Eng Appl Art Intell 20 2007 203 213 (Pubitemid 44822659)
    • (2007) Engineering Applications of Artificial Intelligence , vol.20 , Issue.2 , pp. 203-213
    • Tan, S.C.1    Lim, C.P.2    Rao, M.V.C.3
  • 3
    • 0036656228 scopus 로고    scopus 로고
    • Failure diagnosis and nonlinear observer. Application to a hydraulic process
    • DOI 10.1016/S0016-0032(02)00027-3, PII S0016003202000273
    • H. Hammouri, P. Kabore, S. Othman, and J. Biston Failure diagnosis and nonlinear observer. Application to a hydraulic process J Frank Inst 339 2002 455 478 (Pubitemid 35039772)
    • (2002) Journal of the Franklin Institute , vol.339 , Issue.4-5 , pp. 455-478
    • Hammouri, H.1    Kabore, P.2    Othman, S.3    Biston, J.4
  • 4
    • 33750962698 scopus 로고    scopus 로고
    • Evolving an artificial neural network classifier for condition monitoring of rotating mechanical systems
    • DOI 10.1016/j.asoc.2005.10.001, PII S156849460500092X
    • A. Saxena, and A. Saad Evolving an artificial neural network classifier for condition monitoring of rotating mechanical systems Appl Soft Comput 7 2007 441 454 (Pubitemid 44739445)
    • (2007) Applied Soft Computing Journal , vol.7 , Issue.1 , pp. 441-454
    • Saxena, A.1    Saad, A.2
  • 5
    • 13444257464 scopus 로고    scopus 로고
    • Development of diagnosis algorithm for the check valve with spectral estimations and neural network models using acoustic signals
    • DOI 10.1016/j.anucene.2004.11.011, PII S0306454904002282
    • S.-H. Seong, S. Hur, J.-S. Kim, J.-T. Kim, W.-M. Park, and U.-C. Lee Development of diagnosis algorithm for the check valve with spectral estimations and neural network models using acoustic signals Annals Nucl Energy 32 2005 479 492 (Pubitemid 40200566)
    • (2005) Annals of Nuclear Energy , vol.32 , Issue.5 , pp. 479-492
    • Seong, S.-H.1    Hur, S.2    Kim, J.-S.3    Kim, J.-T.4    Park, W.-M.5    Lee, U.-C.6    Lee, S.-K.7
  • 6
    • 0942289503 scopus 로고    scopus 로고
    • Gear fault detection using artificial neural networks and support vector machines with genetic algorithms
    • B. Samanta Gear fault detection using artificial neural networks and support vector machines with genetic algorithms Mech Syst Signal Process 18 2004 625 644
    • (2004) Mech Syst Signal Process , vol.18 , pp. 625-644
    • Samanta, B.1
  • 7
    • 2942560415 scopus 로고    scopus 로고
    • Artificial neural networks and genetic algorithms for gear fault detection
    • B. Samanta Artificial neural networks and genetic algorithms for gear fault detection Mech Syst Signal Process 18 2004 1273 1282
    • (2004) Mech Syst Signal Process , vol.18 , pp. 1273-1282
    • Samanta, B.1
  • 9
    • 77349091539 scopus 로고    scopus 로고
    • Selection of optimum cutting condition of cobalt-based superalloy with GONNS
    • Ş. Aykut, M. Demetgul, and I. Tansel Selection of optimum cutting condition of cobalt-based superalloy with GONNS The Int J Adv Manuf Technol 46 2010 957 967
    • (2010) The Int J Adv Manuf Technol , vol.46 , pp. 957-967
    • Aykut, Ş.1    Demetgul, M.2    Tansel, I.3
  • 10
    • 77954213893 scopus 로고    scopus 로고
    • Optimizations of friction stir welding of aluminum alloy by using genetically optimized neural network
    • I.N. Tansel, M. Demetgul, H. Okuyucu, and A. Yapici Optimizations of friction stir welding of aluminum alloy by using genetically optimized neural network The Int J Adv Manuf Technol 48 2010 95 101
    • (2010) The Int J Adv Manuf Technol , vol.48 , pp. 95-101
    • Tansel, I.N.1    Demetgul, M.2    Okuyucu, H.3    Yapici, A.4
  • 11
    • 0032294857 scopus 로고    scopus 로고
    • Actuator and sensor fault diagnosis of non-linear etie neural networks and adaptive parameter estimation technique
    • Trieste, Italy
    • Borairi M, Wang H. Actuator and sensor fault diagnosis of non-linear etie neural networks and adaptive parameter estimation technique. In: IEEE international conference on control applications. Trieste, Italy; 1998.
    • (1998) IEEE International Conference on Control Applications
    • Borairi, M.1    Wang, H.2
  • 12
    • 0036666092 scopus 로고    scopus 로고
    • Genetic algorithm training of Elman neural network in motor fault detection
    • DOI 10.1007/s005210200014
    • X.Z. Gao, and S.J. Ovaska Genetic algorithm training of elman neural network in motor fault detection Neural Comput Appl 11 2002 37 44 (Pubitemid 36156155)
    • (2002) Neural Computing and Applications , vol.11 , Issue.1 , pp. 37-44
    • Gao, X.Z.1    Ovaska, S.J.2
  • 13
    • 0037285104 scopus 로고    scopus 로고
    • Condition assessment of power transformers using genetic-based neural networks
    • Y.C. Huang Condition assessment of power transformers using genetic-based neural networks IEE Proc Sci Measur Technol 150 2003 19
    • (2003) IEE Proc Sci Measur Technol , vol.150 , pp. 19
    • Huang, Y.C.1
  • 15
    • 0343703436 scopus 로고    scopus 로고
    • Application of genetic algorithms to fault diagnosis in nuclear power plants
    • DOI 10.1016/S0951-8320(99)00061-7
    • Z. Yangping, Z. Bingquan, and W. DongXin Application of genetic algorithms to fault diagnosis in nuclear power plants Reliab Eng Syst Safety 67 2000 153 160 (Pubitemid 32212607)
    • (2000) Reliability Engineering and System Safety , vol.67 , Issue.2 , pp. 153-160
    • Yangping, Z.1    Bingquan, Z.2    DongXin, W.3
  • 16
    • 33750963282 scopus 로고    scopus 로고
    • A genetic algorithms based multi-objective neural net applied to noisy blast furnace data
    • DOI 10.1016/j.asoc.2005.09.001, PII S1568494605000803
    • F. Pettersson, N. Chakraborti, and H. Saxén A genetic algorithms based multi-objective neural net applied to noisy blast furnace data Appl Soft Comput 7 2007 387 397 (Pubitemid 44739441)
    • (2007) Applied Soft Computing Journal , vol.7 , Issue.1 , pp. 387-397
    • Pettersson, F.1    Chakraborti, N.2    Saxen, H.3
  • 17
    • 36749003757 scopus 로고    scopus 로고
    • A dynamic all parameters adaptive BP neural networks model and its application on oil reservoir prediction
    • DOI 10.1016/j.amc.2007.04.088, PII S0096300307005188
    • S. Yu, K. Zhu, and F. Diao A dynamic all parameters adaptive BP neural networks model and its application on oil reservoir prediction Appl Math Comput 195 2008 66 75 (Pubitemid 350213065)
    • (2008) Applied Mathematics and Computation , vol.195 , Issue.1 , pp. 66-75
    • Yu, S.1    Zhu, K.2    Diao, F.3
  • 18
    • 33947178915 scopus 로고    scopus 로고
    • Springback prediction for sheet metal forming based on GA-ANN technology
    • DOI 10.1016/j.jmatprotec.2006.11.087, PII S0924013606010909
    • W. Liu, Q. Liu, F. Ruan, Z. Liang, and H. Qiu Springback prediction for sheet metal forming based on GA-ANN technology J Mater Process Technol 187-188 2007 227 231 (Pubitemid 46412859)
    • (2007) Journal of Materials Processing Technology , vol.187-188 , pp. 227-231
    • Liu, W.1    Liu, Q.2    Ruan, F.3    Liang, Z.4    Qiu, H.5
  • 19
    • 0036625502 scopus 로고    scopus 로고
    • Neural network classifiers applied to condition monitoring of a pneumatic process valve actuator
    • DOI 10.1016/S0952-1976(02)00068-4, PII S0952197602000684
    • M. Karpenko, and N. Sepehri Neural network classifiers applied to condition monitoring of a pneumatic process valve actuator Eng Appl Art Intell 15 2002 273 283 (Pubitemid 35412474)
    • (2002) Engineering Applications of Artificial Intelligence , vol.15 , Issue.3-4 , pp. 273-283
    • Karpenko, M.1    Sepehri, N.2
  • 20
    • 0344494571 scopus 로고    scopus 로고
    • Diagnosis of process valve actuator faults using a multilayer neural network
    • DOI 10.1016/S0967-0661(02)00245-9, PII S0967066102002459
    • M. Karpenko, N. Sepehri, and D. Scuse Diagnosis of process valve actuator faults using a multilayer neural network Control Eng Pract 11 2003 1289 1299 (Pubitemid 37481821)
    • (2003) Control Engineering Practice , vol.11 , Issue.11 , pp. 1289-1299
    • Karpenko, M.1    Sepehri, N.2    Scuse, D.3
  • 22
    • 8744302864 scopus 로고    scopus 로고
    • Adaptive fuzzy-neural-based multiple models for fault diagnosis of a pneumatic actuator
    • Boston
    • Shi L, Sepehri N. Adaptive fuzzy-neural-based multiple models for fault diagnosis of a pneumatic actuator. In: American control conference. Boston; 2004.
    • (2004) American Control Conference
    • Shi, L.1    Sepehri, N.2
  • 23
    • 67349214658 scopus 로고    scopus 로고
    • Fault diagnosis of pneumatic systems with artificial neural network algorithms
    • M. Demetgul, I.N. Tansel, and S. Taskin Fault diagnosis of pneumatic systems with artificial neural network algorithms Expert Syst Appl 36 2009 10512 10519
    • (2009) Expert Syst Appl , vol.36 , pp. 10512-10519
    • Demetgul, M.1    Tansel, I.N.2    Taskin, S.3
  • 24
    • 0037280148 scopus 로고    scopus 로고
    • A process monitoring system based on the Kohonen self-organizing maps
    • DOI 10.1016/S0967-0661(02)00141-7, PII S0967066102001417
    • S.L. Jämsä-Jounela, M. Vermasvuori, P. Endén, and S. Haavisto A process monitoring system based on the Kohonen self-organizing maps Control Eng Pract 11 2003 83 92 (Pubitemid 36225296)
    • (2003) Control Engineering Practice , vol.11 , Issue.1 , pp. 83-92
    • Jamsa-Jounela, S.-L.1    Vermasvuori, M.2    Enden, P.3    Haavisto, S.4
  • 25
    • 0942289508 scopus 로고    scopus 로고
    • ART-KOHONEN neural network for fault diagnosis of rotating machinery
    • B.S. Yang, T. Han, and J.L. An ART-KOHONEN neural network for fault diagnosis of rotating machinery Mech Syst Signal Process 18 2004 645 657
    • (2004) Mech Syst Signal Process , vol.18 , pp. 645-657
    • Yang, B.S.1    Han, T.2    An, J.L.3
  • 26
    • 14044252742 scopus 로고    scopus 로고
    • One-class support vector machines - An application in machine fault detection and classification
    • DOI 10.1016/j.cie.2005.01.009, PII S0360835205000100
    • H.J. Shin, D.-H. Eom, and S.-S. Kim One-class support vector machines - an application in machine fault detection and classification Comput Indust Eng 48 2005 395 408 (Pubitemid 40274932)
    • (2005) Computers and Industrial Engineering , vol.48 , Issue.2 , pp. 395-408
    • Shin, H.J.1    Eom, D.-H.2    Kim, S.-S.3
  • 27
    • 80052742779 scopus 로고    scopus 로고
    • PhD Thesis. stanbul: Marmara University. Institute of Graduate Studies in Pure and Applied Sciences
    • Demetgul M. Fault diagnosis at pneumatic system with neural networks, PhD Thesis. stanbul: Marmara University. Institute of Graduate Studies in Pure and Applied Sciences; 2006.
    • (2006) Fault Diagnosis at Pneumatic System with Neural Networks
    • Demetgul, M.1
  • 29
    • 84864669095 scopus 로고    scopus 로고
    • Trajectory tracking performance comparison between genetic algorithm and ant colony optimization for PID controller tuning on pressure process
    • doi:10.1002/cae.20420
    • Ünal M, Erdal H, Topuz V. Trajectory tracking performance comparison between genetic algorithm and ant colony optimization for PID controller tuning on pressure process. Comput Appl Eng Edu; 2010, doi: 10.1002/cae.20420.
    • (2010) Comput Appl Eng Edu
    • Nal, M.1    Erdal, H.2    Topuz, V.3
  • 32
    • 24344471817 scopus 로고    scopus 로고
    • Biological engineering applications of feedforward neural networks designed and parameterized by genetic algorithms
    • DOI 10.1016/j.neunet.2005.03.010, PII S0893608005000468
    • K.P. Ferentinos Biological engineering applications of feedforward neural networks designed and parameterized by genetic algorithms Neural Networks 18 2005 934 950 (Pubitemid 41253509)
    • (2005) Neural Networks , vol.18 , Issue.7 , pp. 934-950
    • Ferentinos, K.P.1
  • 33
    • 0037226313 scopus 로고    scopus 로고
    • Design of structural modular neural networks with genetic algorithm
    • N. Jiang, Z. Zhao, and L. Ren Design of structural modular neural networks with genetic algorithm Adv Eng Softw 34 2003 17 24
    • (2003) Adv Eng Softw , vol.34 , pp. 17-24
    • Jiang, N.1    Zhao, Z.2    Ren, L.3
  • 34
    • 0032292610 scopus 로고    scopus 로고
    • A hierarchical neural network approach to the development of a library of neural models for microwave design
    • PII S0018948098091935
    • F. Wang, V. Devabhaktuni, and Q.J. Zhang A hierarchical neural network approach to the development of library of neural models for microwave design Micro Theory Tech 46 1998 2391 2403 (Pubitemid 128738979)
    • (1998) IEEE Transactions on Microwave Theory and Techniques , vol.46 , Issue.12 PART 2 , pp. 2391-2403
    • Wang, F.1    Devabhaktuni, V.K.2    Zhang, Q.-J.3
  • 35
    • 0001008973 scopus 로고
    • Neurogenetic learning: An integrated method of designing and training neural networks using genetic algorithms
    • H. Kitano Neurogenetic learning: an integrated method of designing and training neural networks using genetic algorithms Physica D 75 1994 225 228
    • (1994) Physica D , vol.75 , pp. 225-228
    • Kitano, H.1
  • 36
    • 0028336556 scopus 로고
    • Genetic evolution of the topology and weight distribution of neural networks
    • V. Maniezzo Genetic evolution of the topology and weight distribution of neural networks IEEE Trans Neural Networks 1994 5
    • (1994) IEEE Trans Neural Networks , pp. 5
    • Maniezzo, V.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.