메뉴 건너뛰기




Volumn , Issue , 1995, Pages 378-386

Efficient Learning with Virtual Threshold Gates

Author keywords

[No Author keywords available]

Indexed keywords

E-LEARNING;

EID: 85152630870     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (9)

References (39)
  • 2
    • 0000710299 scopus 로고
    • Queries and concept learning
    • [Ang88]
    • [Ang88] Dana Angluin. Queries and concept learning. Machine Learning, 2(4):319-342,1988.
    • (1988) Machine Learning , vol.2 , Issue.4 , pp. 319-342
    • Angluin, Dana1
  • 10
    • 84986753988 scopus 로고
    • Universal portfolios
    • [Cov91] l(l):l-29
    • [Cov91] T. Cover. Universal portfolios. Mathematical Finance, l(l):l-29,1991.
    • (1991) Mathematical Finance
    • Cover, T.1
  • 13
    • 2542455833 scopus 로고
    • Learning Conjunctive Concepts in Structural Domains
    • [Hau89] (l)
    • [Hau89] David Haussler. Learning Conjunctive Concepts in Structural Domains. Machine Learning 4(l):7-40,1989.
    • (1989) Machine Learning , vol.4 , pp. 7-40
    • Haussler, David1
  • 14
    • 84888195378 scopus 로고    scopus 로고
    • Tight worst-case loss bounds for predicting with expert advice
    • [HKW94] Technical Report UCSCCRL 94-36, University of California Computer Research Laboratory, Santa Cruz, CA. An extended abstract appeared in the Proceedings of the Second European Conference, Euro COLT95, Springer Verlag, Lecture Notes in Artificial Intelligence
    • [HKW94] D. Haussler, J. Kivinen, and M. K. Warmuth. Tight worst-case loss bounds for predicting with expert advice. Technical Report UCSCCRL- 94-36, University of California Computer Research Laboratory, Santa Cruz, CA. An extended abstract appeared in the Proceedings of the Second European Conference, Euro- COLT95, Springer Verlag, Lecture Notes in Artificial Intelligence, Vol. 904, pp. 69-83.
    • , vol.904 , pp. 69-83
    • Haussler, D.1    Kivinen, J.2    Warmuth, M. K.3
  • 16
    • 0025446773 scopus 로고
    • Learning Nested Differences of Intersection-Closed Concept Classes
    • [HSW90]
    • [HSW90] D. P. Helmbold, R. Sloan and Manfred K. Warmuth. Learning Nested Differences of Intersection-Closed Concept Classes. Machine Learning, vol. 5, pp. 165-196,1990.
    • (1990) Machine Learning , vol.5 , pp. 165-196
    • Helmbold, D. P.1    Sloan, R.2    Warmuth, Manfred K.3
  • 19
    • 85152633630 scopus 로고    scopus 로고
    • Exponentiated gradient versus gradient descent for linear predictors
    • [KW94] Technical Report UCSC-CRL-94-16, Univ. of Calif. Computer Research Lab, Santa Cruz, CA, June 1994. To appear in the Proceeding of the Twenty Seventh Annual ACM Symposium on Theory of Computing, Las Vegas, May 1995
    • [KW94] Kivinen, J., Warmuth, M. K.: Exponentiated gradient versus gradient descent for linear predictors. Technical Report UCSC-CRL-94-16, Univ. of Calif. Computer Research Lab, Santa Cruz, CA, June 1994. To appear in the Proceeding of the Twenty Seventh Annual ACM Symposium on Theory of Computing, Las Vegas, May 1995.
    • Kivinen, J.1    Warmuth, M. K.2
  • 21
    • 34250091945 scopus 로고
    • Learning when irrelevant attributes abound: A new linear-threshold algorithm
    • [Lit88]
    • [Lit88] N. Littlestone. Learning when irrelevant attributes abound: A new linear-threshold algorithm. Machine Learning, 2:285-318,1988.
    • (1988) Machine Learning , vol.2 , pp. 285-318
    • Littlestone, N.1
  • 24
    • 85152622477 scopus 로고    scopus 로고
    • Redundant noisy attributes, attribute errors, and linear threshold learning using Winnow
    • [Lit91] pages
    • [Lit91] N. Littlestone. Redundant noisy attributes, attribute errors, and linear threshold learning using Winnow. In Proc. 4th Annu. Workshon on Comput. Learning Theory, pages
    • Proc. 4th Annu. Workshon on Comput. Learning Theory
    • Littlestone, N.1
  • 26
    • 0028384661 scopus 로고
    • Algorithms and lower bounds for on-line learning of geometrical concepts
    • [MT94]
    • [MT94] Wolfgang Maass and György Turân. Algorithms and lower bounds for on-line learning of geometrical concepts. Machine Learning 14,251-269,1994.
    • (1994) Machine Learning , vol.14 , pp. 251-269
    • Maass, Wolfgang1    Turân, György2
  • 27
    • 0000586256 scopus 로고
    • Lower bound methods and separation results for online learning models
    • [MT92]
    • [MT92] Wolfgang Maass and György Turân. Lower bound methods and separation results for online learning models. Machine Learning, 9:107-145,1992.
    • (1992) Machine Learning , vol.9 , pp. 107-145
    • Maass, Wolfgang1    Turân, György2
  • 28
    • 11144273669 scopus 로고
    • The perceptron: A probabilistic model for information storage and organization in the brain
    • [Ros58] (Reprinted in Neurocomputing (MIT Press, 1988))
    • [Ros58] F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization in the brain. Psych. Rev., 65:386-407, 1958. (Reprinted in Neurocomputing (MIT Press, 1988).).
    • (1958) Psych. Rev , vol.65 , pp. 386-407
    • Rosenblatt, F.1
  • 29
    • 0021518106 scopus 로고
    • A theory of the learnable
    • [Val84] November
    • [Val84] L. G. Valiant. A theory of the learnable. Commun. ACM, 27(11): 1134-1142, November 1984.
    • (1984) Commun. ACM , vol.27 , Issue.11 , pp. 1134-1142
    • Valiant, L. G.1
  • 30
    • 0001024505 scopus 로고
    • On the uniform convergence of relative frequencies of events to their probabilities
    • [VC71]
    • [VC71] V N. Vapnik and A. Y. Chervonenkis. On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and its Applications, 16(2): 264- 280,1971.
    • (1971) Theory of Probability and its Applications , vol.16 , Issue.2 , pp. 264-280
    • Vapnik, V N.1    Chervonenkis, A. Y.2
  • 31
    • 85048665932 scopus 로고
    • Aggregating strategies
    • [Vov90] pages Morgan Kaufmann, San Mateo, CA
    • [Vov90] Vovk, V: Aggregating strategies. In Proc. 3rd Worhhopon Computational Learning Theory, pages 371-383. Morgan Kaufmann, San Mateo, CA, 1990.
    • (1990) Proc. 3rd Worhhopon Computational Learning Theory , pp. 371-383
    • Vovk, V1
  • 34
    • 0028384661 scopus 로고
    • Algorithms and lower bounds for on-line learning of geometrical concepts
    • [MT94]
    • [MT94] Wolfgang Maass and György Turân. Algorithms and lower bounds for on-line learning of geometrical concepts. Machine Learning 14,251-269,1994.
    • (1994) Machine Learning , vol.14 , pp. 251-269
    • Maass, Wolfgang1    Turân, György2
  • 35
    • 0000586256 scopus 로고
    • Lower bound methods and separation results for online learning models
    • [MT92]
    • [MT92] Wolfgang Maass and György Turân. Lower bound methods and separation results for online learning models. Machine Learning, 9:107-145,1992.
    • (1992) Machine Learning , vol.9 , pp. 107-145
    • Maass, Wolfgang1    Turân, György2
  • 36
    • 11144273669 scopus 로고
    • The perceptron: A probabilistic model for information storage and organization in the brain
    • [Ros58] (Reprinted in Neurocomputing (MIT Press, 1988))
    • [Ros58] F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization in the brain. Psych. Rev., 65:386-407, 1958. (Reprinted in Neurocomputing (MIT Press, 1988).).
    • (1958) Psych. Rev , vol.65 , pp. 386-407
    • Rosenblatt, F.1
  • 37
    • 0021518106 scopus 로고
    • A theory of the learnable
    • [Val84] November
    • [Val84] L. G. Valiant. A theory of the learnable. Commun. ACM, 27(11): 1134-1142, November 1984.
    • (1984) Commun. ACM , vol.27 , Issue.11 , pp. 1134-1142
    • Valiant, L. G.1
  • 38
    • 0001024505 scopus 로고
    • On the uniform convergence of relative frequencies of events to their probabilities
    • [VC71]
    • [VC71] V N. Vapnik and A. Y. Chervonenkis. On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and its Applications, 16(2): 264- 280,1971.
    • (1971) Theory of Probability and its Applications , vol.16 , Issue.2 , pp. 264-280
    • Vapnik, V N.1    Chervonenkis, A. Y.2
  • 39
    • 85048665932 scopus 로고
    • Aggregating strategies
    • [Vov90] pages Morgan Kaufmann, San Mateo, CA
    • [Vov90] Vovk, V: Aggregating strategies. In Proc. 3rd Worhhopon Computational Learning Theory, pages 371-383. Morgan Kaufmann, San Mateo, CA, 1990.
    • (1990) Proc. 3rd Worhhopon Computational Learning Theory , pp. 371-383
    • Vovk, V1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.