-
1
-
-
0036373967
-
Geometric stability switch criteria in delay differential systems with delay dependent parameters
-
E. Beretta and Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters, SIAM J. Math. Anal., 33(2002), 1144-1165.
-
(2002)
SIAM J. Math. Anal.
, vol.33
, pp. 1144-1165
-
-
Beretta, E.1
Kuang, Y.2
-
2
-
-
0018041874
-
A generalization of the Kermack-McKendrick deterministic epidemic model
-
DOI 10.1016/0025-5564(78)90006-8
-
V. Capasso and G. Serio, A generalization of the Kermack-McKendric deterministic epidemic model, Math. Biosci., 42(1978), 43-61. (Pubitemid 9117153)
-
(1978)
Mathematical Biosciences
, vol.42
, Issue.1-2
, pp. 43-61
-
-
Capasso, V.1
Serio, G.2
-
3
-
-
84892306477
-
-
Birkhauser Boston, Inc., Boston, MA
-
M. Giaquinta and G. Modica, "Mathematical Analysis. An Introduction to Functions of Several Variables", Birkhauser Boston, Inc., Boston, MA, 2009.
-
(2009)
Mathematical Analysis. An Introduction to Functions of Several Variables
-
-
Giaquinta, M.1
Modica, G.2
-
4
-
-
79958771385
-
Global analysis on delay epidemiological dynamic models with nonlinear incidence
-
G. Huang and Y. Takeuchi, Global analysis on delay epidemiological dynamic models with nonlinear incidence, J. Math. Biol., 63(2011), 125-139.
-
(2011)
J. Math. Biol.
, vol.63
, pp. 125-139
-
-
Huang, G.1
Takeuchi, Y.2
-
5
-
-
77956236840
-
Lyapunov functionals for delay differential equations model of viral infection
-
G. Huang, Y. Takeuchi and W. Ma, Lyapunov functionals for delay differential equations model of viral infection, SIAM J. Appl. Math., 70(2010), 2693-2708.
-
(2010)
SIAM J. Appl. Math.
, vol.70
, pp. 2693-2708
-
-
Huang, G.1
Takeuchi, Y.2
Ma, W.3
-
6
-
-
77954623221
-
Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate
-
G. Huang, Y. Takeuchi, W. Ma and D. Wei, Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate, Bull. Math. Biol., 72(2010), 1192-1207.
-
(2010)
Bull. Math. Biol.
, vol.72
, pp. 1192-1207
-
-
Huang, G.1
Takeuchi, Y.2
Ma, W.3
Wei, D.4
-
7
-
-
34547655762
-
Global properties of infectious disease models with nonlinear incidence
-
DOI 10.1007/s11538-007-9196-y
-
A. Korobeinikov, Global properties of infectious disease models with nonlinear incidence, Bull. Math. Biol., 69(2007), 1871-1886. (Pubitemid 47222242)
-
(2007)
Bulletin of Mathematical Biology
, vol.69
, Issue.6
, pp. 1871-1886
-
-
Korobeinikov, A.1
-
9
-
-
77957792337
-
Global asymptotic dynamics of a model of quarantine and isolation
-
M. A. Safi and A. B. Gumel, Global asymptotic dynamics of a model of quarantine and isolation, Discrete Contin. Dyn. S., 14(2010), 209-231.
-
(2010)
Discrete Contin. Dyn. S.
, vol.14
, pp. 209-231
-
-
Safi, M.A.1
Gumel, A.B.2
-
11
-
-
78651371641
-
A delayed SIR epidemic model with saturation incidence and constant infectious period
-
R. Xu and Y. Du, A delayed SIR epidemic model with saturation incidence and constant infectious period, J. Appl. Math. Comp., 35(2010), 229-250.
-
(2010)
J. Appl. Math. Comp.
, vol.35
, pp. 229-250
-
-
Xu, R.1
Du, Y.2
-
12
-
-
77954349252
-
Global stability of a delayed SEIRS epidemic model with saturation incidence rate
-
R. Xu and Z. Ma, Global stability of a delayed SEIRS epidemic model with saturation incidence rate, Nonlinear Dynam., 61(2010), 229-239.
-
(2010)
Nonlinear Dynam.
, vol.61
, pp. 229-239
-
-
Xu, R.1
Ma, Z.2
-
13
-
-
41949125685
-
Global stability of an SIR epidemic model with constant infectious period
-
DOI 10.1016/j.amc.2007.09.053, PII S0096300307009964
-
F. Zhang, Z. Li and F. Zhang, Global stability of an SIR epidemic model with constant infectious period, Appl. Math. Comput, 199(2008), 285-291. (Pubitemid 351508332)
-
(2008)
Applied Mathematics and Computation
, vol.199
, Issue.1
, pp. 285-291
-
-
Zhang, F.1
Li, Z.-z.2
Zhang, F.3
|