메뉴 건너뛰기




Volumn 61, Issue 1-2, 2010, Pages 229-239

Global stability of a delayed SEIRS epidemic model with saturation incidence rate

Author keywords

Latent period; SEIRS epidemic model; Stability; Time delay

Indexed keywords

BASIC REPRODUCTION NUMBER; CHARACTERISTIC EQUATION; DISEASE-FREE EQUILIBRIUM; ENDEMIC EQUILIBRIUM; EPIDEMIC MODELS; GLOBAL ASYMPTOTIC STABILITY; GLOBAL STABILITY; GLOBALLY ASYMPTOTICALLY STABLE; INCIDENCE RATE; ITERATION TECHNIQUES; LATENT PERIOD; LOCAL STABILITY; NUMERICAL SIMULATION; SUFFICIENT CONDITIONS; THEORETICAL RESULT;

EID: 77954349252     PISSN: 0924090X     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11071-009-9644-3     Document Type: Article
Times cited : (70)

References (25)
  • 1
    • 0035425156 scopus 로고    scopus 로고
    • Global asymptotic stability of an SIR epidemic model with distributed time delay
    • DOI 10.1016/S0362-546X(01)00528-4, PII S0362546X01005284
    • E. Beretta T. Hara W. Ma Y. Takeuchi 2001 Global asymptotic stability of an SIR epidemic model with distributed time delay Nonlinear Anal. 47 4107 4115 1042.34585 10.1016/S0362-546X(01)00528-4 1972351 (Pubitemid 32724581)
    • (2001) Nonlinear Analysis, Theory, Methods and Applications , vol.47 , Issue.6 , pp. 4107-4115
    • Beretta, E.1    Hara, T.2    Ma, W.3    Takeuchi, Y.4
  • 2
    • 0029190838 scopus 로고
    • Global stability of an SIR epidemic model with time delays
    • 0811.92019 10.1007/BF00169563 1331508
    • E. Beretta Y. Takeuchi 1995 Global stability of an SIR epidemic model with time delays J. Math. Biol. 33 250 260 0811.92019 10.1007/BF00169563 1331508
    • (1995) J. Math. Biol. , vol.33 , pp. 250-260
    • Beretta, E.1    Takeuchi, Y.2
  • 3
    • 0031167217 scopus 로고    scopus 로고
    • Convergence results in SIR epidemic model with varying population sizes
    • 0879.34054 10.1016/S0362-546X(96)00035-1 1436361
    • E. Beretta Y. Takeuchi 1997 Convergence results in SIR epidemic model with varying population sizes Nonlinear Anal. 28 1909 1921 0879.34054 10.1016/S0362-546X(96)00035-1 1436361
    • (1997) Nonlinear Anal. , vol.28 , pp. 1909-1921
    • Beretta, E.1    Takeuchi, Y.2
  • 4
    • 0018041874 scopus 로고
    • A generalization of the Kermack-McKendrick deterministic epidemic model
    • DOI 10.1016/0025-5564(78)90006-8
    • V. Capasso G. Serio 1978 A generalization of the Kermack-McKendrick deterministic epidemic model Math. Biosci. 42 41 61 10.1016/0025-5564(78)90006-8 529097 (Pubitemid 9117153)
    • (1978) Mathematical Biosciences , vol.42 , Issue.1-2 , pp. 43-61
    • Capasso, V.1    Serio, G.2
  • 5
    • 0030318519 scopus 로고    scopus 로고
    • Analysis of an SEIRS epidemic model with two delays
    • 0865.92019 10.1007/s002850050051 1478050
    • K. Cooke P. van den Driessche 1996 Analysis of an SEIRS epidemic model with two delays J. Math. Biol. 35 240 260 0865.92019 10.1007/s002850050051 1478050
    • (1996) J. Math. Biol. , vol.35 , pp. 240-260
    • Cooke, K.1    Van Den Driessche, P.2
  • 6
    • 34548612632 scopus 로고    scopus 로고
    • Pulse vaccination in SIRS epidemic model with non-monotonic incidence rate
    • DOI 10.1016/j.chaos.2006.05.054, PII S0960077906005145
    • S. Gakkhar K. Negi 2008 Pulse vaccination in SIRS epidemic model with non-monotonic incidence rate Chaos Solitons Fractals 35 626 638 1131.92052 10.1016/j.chaos.2006.05.054 2359846 (Pubitemid 47404861)
    • (2008) Chaos, Solitons and Fractals , vol.35 , Issue.3 , pp. 626-638
    • Gakkhar, S.1    Negi, K.2
  • 7
    • 37349097013 scopus 로고    scopus 로고
    • Pulse vaccination of an SEIR epidemic model with time delay
    • DOI 10.1016/j.nonrwa.2006.12.004, PII S1468121806001672
    • S. Gao L. Chen Z. Teng 2008 Pulse vaccination of an SEIR epidemic model with time delay Nonlinear Anal.: Real World Appl. 9 599 607 1144.34390 10.1016/j.nonrwa.2006.12.004 2382401 (Pubitemid 350284652)
    • (2008) Nonlinear Analysis: Real World Applications , vol.9 , Issue.2 , pp. 599-607
    • Gao, S.1    Chen, L.2    Teng, Z.3
  • 8
    • 44649122225 scopus 로고    scopus 로고
    • The effects of pulse vaccination on SEIR model with two time delays
    • 1143.92024 10.1016/j.amc.2007.12.019 2432603
    • S. Gao Z. Teng D. Xie 2008 The effects of pulse vaccination on SEIR model with two time delays Appl. Math. Comput. 201 282 292 1143.92024 10.1016/j.amc.2007.12.019 2432603
    • (2008) Appl. Math. Comput. , vol.201 , pp. 282-292
    • Gao, S.1    Teng, Z.2    Xie, D.3
  • 10
    • 0029445684 scopus 로고
    • An SIS epidemic model with variable population size and a delay
    • 0836.92022 10.1007/BF00178772 1366357
    • H.W. Hethcote P. van den Driessche 1995 An SIS epidemic model with variable population size and a delay J. Math. Biol. 34 177 194 0836.92022 10.1007/BF00178772 1366357
    • (1995) J. Math. Biol. , vol.34 , pp. 177-194
    • Hethcote, H.W.1    Van Den Driessche, P.2
  • 11
    • 0033629069 scopus 로고    scopus 로고
    • Two SIS epidemiologic models with delays
    • 0959.92025 10.1007/s002850050003 1819887
    • H.W. Hethcote P. van den Driessche 2000 Two SIS epidemiologic models with delays J. Math. Biol. 40 3 26 0959.92025 10.1007/s002850050003 1819887
    • (2000) J. Math. Biol. , vol.40 , pp. 3-26
    • Hethcote, H.W.1    Van Den Driessche, P.2
  • 12
    • 34250220630 scopus 로고    scopus 로고
    • An SIRS model with a nonlinear incidence rate
    • DOI 10.1016/j.chaos.2006.04.022, PII S0960077906003882
    • Y. Jin W. Wang S. Xiao 2007 An SIRS model with a nonlinear incidence rate Chaos Solitons Fractals 34 1482 1497 1152.34339 10.1016/j.chaos.2006.04.022 2335398 (Pubitemid 46907557)
    • (2007) Chaos, Solitons and Fractals , vol.34 , Issue.5 , pp. 1482-1497
    • Jin, Y.1    Wang, W.2    Xiao, S.3
  • 14
    • 18444376767 scopus 로고    scopus 로고
    • Global stability of a SEIR epidemic model with infectious force in latent, infected and immune period
    • DOI 10.1016/j.chaos.2004.11.062, PII S0960077905000147
    • G. Li Z. Jin 2005 Global stability of an SEIR epidemic model with infectious force in latent, infected and immune period Chaos Solitons Fractals 25 1177 1184 1065.92046 10.1016/j.chaos.2004.11.062 2144662 (Pubitemid 40643069)
    • (2005) Chaos, Solitons and Fractals , vol.25 , Issue.5 , pp. 1177-1184
    • Li, G.1    Jin, Z.2
  • 15
    • 64549114893 scopus 로고    scopus 로고
    • Global stability of an SIRS epidemic model with transport-related infection
    • 10.1016/j.chaos.2007.07.047 2517923
    • J. Liu Y. Zhou 2009 Global stability of an SIRS epidemic model with transport-related infection Chaos Solitons Fractals 40 145 158 10.1016/j.chaos.2007.07.047 2517923
    • (2009) Chaos Solitons Fractals , vol.40 , pp. 145-158
    • Liu, J.1    Zhou, Y.2
  • 16
    • 0023070210 scopus 로고
    • Dynamical behavior of epidemiological models with nonlinear incidence rates
    • 0621.92014 10.1007/BF00277162 908379
    • W.M. Liu H.W. Hethcote S.A. Levin 1987 Dynamical behavior of epidemiological models with nonlinear incidence rates J. Math. Biol. 25 359 380 0621.92014 10.1007/BF00277162 908379
    • (1987) J. Math. Biol. , vol.25 , pp. 359-380
    • Liu, W.M.1    Hethcote, H.W.2    Levin, S.A.3
  • 17
    • 0022298258 scopus 로고
    • Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models
    • 0582.92023 10.1007/BF00276956 829132
    • W.M. Liu S.A. Levin Y. Iwasa 1986 Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models J. Math. Biol. 23 187 204 0582.92023 10.1007/BF00276956 829132
    • (1986) J. Math. Biol. , vol.23 , pp. 187-204
    • Liu, W.M.1    Levin, S.A.2    Iwasa, Y.3
  • 18
    • 10644240707 scopus 로고    scopus 로고
    • Global stability of an SIR epidemic model with time delay
    • 1071.34082 10.1016/j.aml.2003.11.005 2091848
    • W. Ma M. Song Y. Takeuchi 2004 Global stability of an SIR epidemic model with time delay Appl. Math. Lett. 17 1141 1145 1071.34082 10.1016/j.aml.2003.11. 005 2091848
    • (2004) Appl. Math. Lett. , vol.17 , pp. 1141-1145
    • Ma, W.1    Song, M.2    Takeuchi, Y.3
  • 19
    • 0036986139 scopus 로고    scopus 로고
    • Permanence of an SIR epidemic model with distributed time delays
    • 1014.92033 10.2748/tmj/1113247650 1936269
    • W. Ma Y. Takeuchi T. Hara E. Beretta 2002 Permanence of an SIR epidemic model with distributed time delays Tohoku Math. J. 54 581 591 1014.92033 10.2748/tmj/1113247650 1936269
    • (2002) Tohoku Math. J. , vol.54 , pp. 581-591
    • Ma, W.1    Takeuchi, Y.2    Hara, T.3    Beretta, E.4
  • 20
    • 33947200296 scopus 로고    scopus 로고
    • Two profitless delays for the SEIRS epidemic disease model with nonlinear incidence and pulse vaccination
    • DOI 10.1016/j.amc.2006.07.124, PII S0096300306009623
    • X. Meng L. Chen H. Cheng 2007 Two profitless delays for the SEIRS epidemic disease model with nonlinear incidence and pulse vaccination Appl. Math. Comput. 186 516 529 1111.92049 10.1016/j.amc.2006.07.124 2314511 (Pubitemid 46435636)
    • (2007) Applied Mathematics and Computation , vol.186 , Issue.1 , pp. 516-529
    • Meng, X.1    Chen, L.2    Cheng, H.3
  • 21
    • 34250220629 scopus 로고    scopus 로고
    • A delayed SIRS epidemic model with pulse vaccination
    • DOI 10.1016/j.chaos.2006.04.061, PII S0960077906004401
    • G. Pang L. Chen 2007 A delayed SIRS epidemic model with pulse vaccination Chaos Solitons Fractals 34 1629 1635 1152.34379 10.1016/j.chaos.2006.04.061 2335410 (Pubitemid 46907570)
    • (2007) Chaos, Solitons and Fractals , vol.34 , Issue.5 , pp. 1629-1635
    • Pang, G.1    Chen, L.2
  • 22
    • 0032213158 scopus 로고    scopus 로고
    • Pulse vaccination strategy in the SIR epidemic model
    • 0941.92026 10.1016/S0092-8240(98)90005-2
    • B. Shulgin L. Stone Z. Agur 1998 Pulse vaccination strategy in the SIR epidemic model Bull. Math. Biol. 60 1123 1148 0941.92026 10.1016/S0092-8240(98) 90005-2
    • (1998) Bull. Math. Biol. , vol.60 , pp. 1123-1148
    • Shulgin, B.1    Stone, L.2    Agur, Z.3
  • 23
    • 2942686835 scopus 로고    scopus 로고
    • Stability analysis on a delayed SIR epidemic model with density dependent birth process
    • 0937.92026 1678247
    • Y. Takeuchi W. Ma 1999 Stability analysis on a delayed SIR epidemic model with density dependent birth process Dyn. Contin. Discrete Impuls. Syst. 5 171 184 0937.92026 1678247
    • (1999) Dyn. Contin. Discrete Impuls. Syst. , vol.5 , pp. 171-184
    • Takeuchi, Y.1    Ma, W.2
  • 24
    • 0343442479 scopus 로고    scopus 로고
    • Global asymptotic properties of a SIR epidemic model with finite incubation time
    • 10.1016/S0362-546X(99)00138-8 1780445
    • Y. Takeuchi W. Ma E. Beretta 2000 Global asymptotic properties of a SIR epidemic model with finite incubation time Nonlinear Anal. 42 931 947 10.1016/S0362-546X(99)00138-8 1780445
    • (2000) Nonlinear Anal. , vol.42 , pp. 931-947
    • Takeuchi, Y.1    Ma, W.2    Beretta, E.3
  • 25
    • 31244431921 scopus 로고    scopus 로고
    • Global behavior of an SEIRS epidemic model with time delays
    • DOI 10.1016/S0893-9659(01)00153-7, PII S0893965901001537
    • W. Wang 2002 Global behavior of an SEIRS epidemic model with time delays Appl. Math. Lett. 15 423 428 1015.92033 10.1016/S0893-9659(01)00153-7 1902274 (Pubitemid 34267662)
    • (2002) Applied Mathematics Letters , vol.15 , Issue.4
    • Wang, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.