메뉴 건너뛰기




Volumn 35, Issue 1-2, 2011, Pages 229-250

A delayed SIR epidemic model with saturation incidence and a constant infectious period

Author keywords

Infectious period; Permanence; Saturation incidence; SIR epidemic model; Stability; Time delay

Indexed keywords

BASIC REPRODUCTION NUMBER; CHARACTERISTIC EQUATION; DISEASE-FREE EQUILIBRIUM; ENDEMIC EQUILIBRIUM; EXPLICIT FORMULA; GLOBAL ATTRACTIVENESS; GLOBALLY ASYMPTOTICALLY STABLE; INFECTIOUS PERIOD; ITERATION TECHNIQUES; LOCAL STABILITY; LOWER BOUNDS; NUMERICAL SIMULATION; PERMANENCE; SATURATION INCIDENCE; SIR EPIDEMIC MODEL; SUFFICIENT CONDITIONS;

EID: 78651371641     PISSN: 15985865     EISSN: None     Source Type: Journal    
DOI: 10.1007/s12190-009-0353-3     Document Type: Article
Times cited : (15)

References (18)
  • 1
    • 0035425156 scopus 로고    scopus 로고
    • Global asymptotic stability of an SIR epidemic model with distributed time delay
    • 1042.34585 10.1016/S0362-546X(01)00528-4 1972351
    • E. Beretta T. Hara W. Ma Y. Takeuchi 2001 Global asymptotic stability of an SIR epidemic model with distributed time delay Nonlinear Anal. 47 4107 4115 1042.34585 10.1016/S0362-546X(01)00528-4 1972351
    • (2001) Nonlinear Anal. , vol.47 , pp. 4107-4115
    • Beretta, E.1    Hara, T.2    Ma, W.3    Takeuchi, Y.4
  • 2
    • 0036373967 scopus 로고    scopus 로고
    • Geometric stability switch criteria in delay differential systems with delay dependent parameters
    • 1013.92034 10.1137/S0036141000376086 1897706
    • E. Beretta Y. Kuang 2002 Geometric stability switch criteria in delay differential systems with delay dependent parameters SIAM J. Math. Anal. 33 1144 1165 1013.92034 10.1137/S0036141000376086 1897706
    • (2002) SIAM J. Math. Anal. , vol.33 , pp. 1144-1165
    • Beretta, E.1    Kuang, Y.2
  • 3
    • 0029190838 scopus 로고
    • Global stability of an SIR epidemic model with time delays
    • 0811.92019 10.1007/BF00169563 1331508
    • E. Beretta Y. Takeuchi 1995 Global stability of an SIR epidemic model with time delays J. Math. Biol. 33 250 260 0811.92019 10.1007/BF00169563 1331508
    • (1995) J. Math. Biol. , vol.33 , pp. 250-260
    • Beretta, E.1    Takeuchi, Y.2
  • 4
    • 0031167217 scopus 로고    scopus 로고
    • Convergence results in SIR epidemic model with varying population sizes
    • 0879.34054 10.1016/S0362-546X(96)00035-1 1436361
    • E. Beretta Y. Takeuchi 1997 Convergence results in SIR epidemic model with varying population sizes Nonlinear Anal. 28 1909 1921 0879.34054 10.1016/S0362-546X(96)00035-1 1436361
    • (1997) Nonlinear Anal. , vol.28 , pp. 1909-1921
    • Beretta, E.1    Takeuchi, Y.2
  • 5
    • 0018041874 scopus 로고
    • A generalization of the Kermack-Mckendrick deterministic epidemic model
    • 10.1016/0025-5564(78)90006-8 529097
    • V. Capasso G. Serio 1978 A generalization of the Kermack-Mckendrick deterministic epidemic model Math. Biosci. 42 41 61 10.1016/0025-5564(78)90006-8 529097
    • (1978) Math. Biosci. , vol.42 , pp. 41-61
    • Capasso, V.1    Serio, G.2
  • 6
    • 34548612632 scopus 로고    scopus 로고
    • Pulse vaccination in SIRS epidemic model with non-monotonic incidence rate
    • 1131.92052 10.1016/j.chaos.2006.05.054 2359846
    • S. Gakkhar K. Negi 2008 Pulse vaccination in SIRS epidemic model with non-monotonic incidence rate Chaos Solitons Fractals 35 626 638 1131.92052 10.1016/j.chaos.2006.05.054 2359846
    • (2008) Chaos Solitons Fractals , vol.35 , pp. 626-638
    • Gakkhar, S.1    Negi, K.2
  • 7
    • 64949153358 scopus 로고    scopus 로고
    • Analysis of a delayed SIR epidemic model with pulse vaccination
    • 1197.34123 10.1016/j.chaos.2007.08.056 2527842
    • S. Gao Z. Teng D. Xie 2009 Analysis of a delayed SIR epidemic model with pulse vaccination Chaos Solitons Fractals 40 1004 1011 1197.34123 10.1016/j.chaos.2007.08.056 2527842
    • (2009) Chaos Solitons Fractals , vol.40 , pp. 1004-1011
    • Gao, S.1    Teng, Z.2    Xie, D.3
  • 8
    • 33847738909 scopus 로고    scopus 로고
    • Pulse vaccination strategy in a delayed SIR epidemic model with vertical transmission
    • 1191.34062 2257452
    • S. Gao D. Xie L. Chen 2007 Pulse vaccination strategy in a delayed SIR epidemic model with vertical transmission Discrete Contin. Dyn. Syst. Ser. B 7 77 86 1191.34062 2257452
    • (2007) Discrete Contin. Dyn. Syst. Ser. B , vol.7 , pp. 77-86
    • Gao, S.1    Xie, D.2    Chen, L.3
  • 10
    • 2942631566 scopus 로고    scopus 로고
    • Impulsive vaccination of SIR epidemic models with nonlinear incidence rates
    • 1100.92040 10.3934/dcdsb.2004.4.595 2073963
    • J. Hui L. Chen 2004 Impulsive vaccination of SIR epidemic models with nonlinear incidence rates Discrete Contin. Dyn. Syst. Ser. B 4 595 605 1100.92040 10.3934/dcdsb.2004.4.595 2073963
    • (2004) Discrete Contin. Dyn. Syst. Ser. B , vol.4 , pp. 595-605
    • Hui, J.1    Chen, L.2
  • 11
    • 34250220630 scopus 로고    scopus 로고
    • An SIRS model with a nonlinear incidence rate
    • 1152.34339 10.1016/j.chaos.2006.04.022 2335398
    • Y. Jin W. Wang S. Xiao 2007 An SIRS model with a nonlinear incidence rate Chaos Solitons Fractals 34 1482 1497 1152.34339 10.1016/j.chaos.2006.04.022 2335398
    • (2007) Chaos Solitons Fractals , vol.34 , pp. 1482-1497
    • Jin, Y.1    Wang, W.2    Xiao, S.3
  • 12
    • 64549114893 scopus 로고    scopus 로고
    • Global stability of an SIRS epidemic model with transport-related infection
    • 1197.34098 10.1016/j.chaos.2007.07.047 2517923
    • J. Liu Y. Zhou 2009 Global stability of an SIRS epidemic model with transport-related infection Chaos Solitons Fractals 40 145 158 1197.34098 10.1016/j.chaos.2007.07.047 2517923
    • (2009) Chaos Solitons Fractals , vol.40 , pp. 145-158
    • Liu, J.1    Zhou, Y.2
  • 13
    • 10644240707 scopus 로고    scopus 로고
    • Global stability of an SIR epidemic model with time delay
    • 1071.34082 10.1016/j.aml.2003.11.005 2091848
    • W. Ma M. Song Y. Takeuchi 2004 Global stability of an SIR epidemic model with time delay Appl. Math. Lett. 17 1141 1145 1071.34082 10.1016/j.aml.2003.11. 005 2091848
    • (2004) Appl. Math. Lett. , vol.17 , pp. 1141-1145
    • Ma, W.1    Song, M.2    Takeuchi, Y.3
  • 14
    • 0036986139 scopus 로고    scopus 로고
    • Permanence of an SIR epidemic model with distributed time delays
    • 1014.92033 10.2748/tmj/1113247650 1936269
    • W. Ma Y. Takeuchi T. Hara E. Beretta 2002 Permanence of an SIR epidemic model with distributed time delays Tohoku Math. J. 54 581 591 1014.92033 10.2748/tmj/1113247650 1936269
    • (2002) Tohoku Math. J. , vol.54 , pp. 581-591
    • Ma, W.1    Takeuchi, Y.2    Hara, T.3    Beretta, E.4
  • 15
    • 34250220629 scopus 로고    scopus 로고
    • A delayed SIRS epidemic model with pulse vaccination
    • 1152.34379 10.1016/j.chaos.2006.04.061 2335410
    • G. Pang L. Chen 2007 A delayed SIRS epidemic model with pulse vaccination Chaos Solitons Fractals 34 1629 1635 1152.34379 10.1016/j.chaos.2006.04.061 2335410
    • (2007) Chaos Solitons Fractals , vol.34 , pp. 1629-1635
    • Pang, G.1    Chen, L.2
  • 16
    • 0032213158 scopus 로고    scopus 로고
    • Pulse vaccination strategy in the SIR epidemic model
    • 0941.92026 10.1016/S0092-8240(98)90005-2
    • B. Shulgin L. Stone Z. Agur 1998 Pulse vaccination strategy in the SIR epidemic model Bull. Math. Biol. 60 1123 1148 0941.92026 10.1016/S0092-8240(98) 90005-2
    • (1998) Bull. Math. Biol. , vol.60 , pp. 1123-1148
    • Shulgin, B.1    Stone, L.2    Agur, Z.3
  • 17
    • 0034143395 scopus 로고    scopus 로고
    • Theoretical examination of the pulse vaccination policy in the SIR epidemic model
    • 1043.92527 10.1016/S0895-7177(00)00040-6 1756756
    • L. Stone B. Shulgin Z. Agur 2000 Theoretical examination of the pulse vaccination policy in the SIR epidemic model Math. Comput. Modell. 31 207 215 1043.92527 10.1016/S0895-7177(00)00040-6 1756756
    • (2000) Math. Comput. Modell. , vol.31 , pp. 207-215
    • Stone, L.1    Shulgin, B.2    Agur, Z.3
  • 18
    • 0343442479 scopus 로고    scopus 로고
    • Global asymptotic properties of a SIR epidemic model with nite incubation time
    • 0967.34070 10.1016/S0362-546X(99)00138-8 1780445
    • Y. Takeuchi W. Ma E. Beretta 2000 Global asymptotic properties of a SIR epidemic model with nite incubation time Nonlinear Anal. 42 931 947 0967.34070 10.1016/S0362-546X(99)00138-8 1780445
    • (2000) Nonlinear Anal. , vol.42 , pp. 931-947
    • Takeuchi, Y.1    Ma, W.2    Beretta, E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.