메뉴 건너뛰기




Volumn 6913 LNAI, Issue PART 3, 2011, Pages 175-190

Fast support vector machines for structural kernels

Author keywords

[No Author keywords available]

Indexed keywords

CONVERGENCE BOUNDS; CUTTING PLANE ALGORITHMS; CUTTING PLANES; DATA SETS; DIRECTED ACYCLIC GRAPHS; EXPERIMENTAL EVALUATION; FAST LEARNING; PARALLEL IMPLEMENTATIONS; SAMPLING STRATEGIES; SPEED-UPS;

EID: 80052419154     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-23808-6_12     Document Type: Conference Paper
Times cited : (8)

References (24)
  • 3
    • 85036148712 scopus 로고    scopus 로고
    • A maximum-entropy-inspired parser
    • Charniak, E.: A maximum-entropy-inspired parser. In: ANLP, pp. 132-139 (2000)
    • (2000) ANLP , pp. 132-139
    • Charniak, E.1
  • 4
    • 33646057547 scopus 로고    scopus 로고
    • New ranking algorithms for parsing and tagging: Kernels over discrete structures, and the voted perceptron
    • Collins, M., Duffy, N.: New ranking algorithms for parsing and tagging: Kernels over discrete structures, and the voted perceptron. In: ACL, pp. 263-270 (2002)
    • (2002) ACL , pp. 263-270
    • Collins, M.1    Duffy, N.2
  • 7
    • 29144499905 scopus 로고    scopus 로고
    • Working set selection using the second order information for training svm
    • Fan, R., Chen, P., Lin, C.: Working set selection using the second order information for training svm. Journal of Machine Learning Research 6, 1889-1918 (2005)
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1889-1918
    • Fan, R.1    Chen, P.2    Lin, C.3
  • 8
    • 56449101964 scopus 로고    scopus 로고
    • Optimized cutting plane algorithm for support vector machines
    • Franc, V., Sonnenburg, S.: Optimized cutting plane algorithm for support vector machines. In: ICML, pp. 320-327 (2008)
    • (2008) ICML , pp. 320-327
    • Franc, V.1    Sonnenburg, S.2
  • 9
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale SVM learning practical
    • ch. 11, . MIT Press, Cambridge
    • Joachims, T.: Making large-scale SVM learning practical. In: Advances in Kernel Methods - Support Vector Learning, ch. 11, pp. 169-184. MIT Press, Cambridge (1999)
    • (1999) Advances in Kernel Methods - Support Vector Learning , pp. 169-184
    • Joachims, T.1
  • 10
    • 33749563073 scopus 로고    scopus 로고
    • Training linear SVMs in linear time
    • Joachims, T.: Training linear SVMs in linear time. In: KDD (2006)
    • (2006) KDD
    • Joachims, T.1
  • 11
    • 68949154453 scopus 로고    scopus 로고
    • Sparse kernel svms via cutting-plane training
    • eCML
    • Joachims, T., Yu, C.N.J.: Sparse kernel svms via cutting-plane training. Machine Learning 76(2-3), 179-193 (2009), eCML
    • (2009) Machine Learning , vol.76 , Issue.2-3 , pp. 179-193
    • Joachims, T.1    Yu, C.N.J.2
  • 12
    • 84860540911 scopus 로고    scopus 로고
    • Using string-kernels for learning semantic parsers
    • July
    • Kate, R.J., Mooney, R.J.: Using string-kernels for learning semantic parsers. In: ACL (July 2006)
    • (2006) ACL
    • Kate, R.J.1    Mooney, R.J.2
  • 14
    • 84874714333 scopus 로고    scopus 로고
    • Making tree kernels practical for natural language learning
    • The Association for Computer Linguistics
    • Moschitti, A.: Making tree kernels practical for natural language learning. In: EACL. The Association for Computer Linguistics (2006)
    • (2006) EACL
    • Moschitti, A.1
  • 15
    • 33645983416 scopus 로고    scopus 로고
    • The proposition bank: An annotated corpus of semantic roles
    • Palmer, M., Kingsbury, P., Gildea, D.: The proposition bank: An annotated corpus of semantic roles. Computational Linguistics 31(1), 71-106 (2005)
    • (2005) Computational Linguistics , vol.31 , Issue.1 , pp. 71-106
    • Palmer, M.1    Kingsbury, P.2    Gildea, D.3
  • 16
    • 77958058028 scopus 로고    scopus 로고
    • Large-scale support vector learning with structural kernels
    • Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. Springer, Heidelberg
    • Severyn, A., Moschitti, A.: Large-scale support vector learning with structural kernels. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. LNCS, vol. 6323, pp. 229-244. Springer, Heidelberg (2010)
    • (2010) LNCS , vol.6323 , pp. 229-244
    • Severyn, A.1    Moschitti, A.2
  • 23
    • 65449143358 scopus 로고    scopus 로고
    • Training structural svms with kernels using sampled cuts
    • Yu, C.N.J., Joachims, T.: Training structural svms with kernels using sampled cuts. In: KDD, pp. 794-802 (2008)
    • (2008) KDD , pp. 794-802
    • Yu, C.N.J.1    Joachims, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.