메뉴 건너뛰기




Volumn 12, Issue , 2011, Pages

Dimension reduction with gene expression data using targeted variable importance measurement

Author keywords

[No Author keywords available]

Indexed keywords

BIASED ESTIMATES; CANDIDATE GENES; CORRELATION STRUCTURE; DIMENSION REDUCTION; GENE EXPRESSION DATA; TWO-STAGE PROCEDURES; VARIABLE IMPORTANCES; VARIABLE RANKING;

EID: 80052375029     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-12-312     Document Type: Article
Times cited : (20)

References (29)
  • 2
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • Dudoit S, Fridlyand J, Speed T. Comparison of discrimination methods for the classification of tumors using gene expression data. JASA 2002, 97:77-87.
    • (2002) JASA , vol.97 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.3
  • 4
    • 0038391397 scopus 로고    scopus 로고
    • Boosting for tumor classification with gene expression data
    • 10.1093/bioinformatics/btf867, 12801866
    • Dettling M, Buhlmann P. Boosting for tumor classification with gene expression data. Bioinformatics 2003, 19:1061-1069. 10.1093/bioinformatics/btf867, 12801866.
    • (2003) Bioinformatics , vol.19 , pp. 1061-1069
    • Dettling, M.1    Buhlmann, P.2
  • 5
    • 0036364086 scopus 로고    scopus 로고
    • Singular value decomposition regression modeling for classification of tumors from microarray experiments
    • Ghosh D. Singular value decomposition regression modeling for classification of tumors from microarray experiments. Proceedings of the Pacific Symposium on Biocomputing 2002, 18-29.
    • (2002) Proceedings of the Pacific Symposium on Biocomputing , pp. 18-29
    • Ghosh, D.1
  • 6
    • 0036166439 scopus 로고    scopus 로고
    • Tumor classification by partial least squares using microarray gene expression data
    • 10.1093/bioinformatics/18.1.39, 11836210
    • Nguyen DV, Rocke DM. Tumor classification by partial least squares using microarray gene expression data. Bioinformatics 2002, 18:39-50. 10.1093/bioinformatics/18.1.39, 11836210.
    • (2002) Bioinformatics , vol.18 , pp. 39-50
    • Nguyen, D.V.1    Rocke, D.M.2
  • 7
    • 0036740519 scopus 로고    scopus 로고
    • Multi-class cancer classification via partial least squares with gene expression profiles
    • 10.1093/bioinformatics/18.9.1216, 12217913
    • Nguyen DV, Rocke DM. Multi-class cancer classification via partial least squares with gene expression profiles. Bioinformatics 2002, 18:1216-1226. 10.1093/bioinformatics/18.9.1216, 12217913.
    • (2002) Bioinformatics , vol.18 , pp. 1216-1226
    • Nguyen, D.V.1    Rocke, D.M.2
  • 8
    • 0242559063 scopus 로고    scopus 로고
    • Linear regression and two-class classification with gene expression data
    • 10.1093/bioinformatics/btg283, 14594712
    • Huang X, W P. Linear regression and two-class classification with gene expression data. Bioinformatics 2003, 19:2072-2978. 10.1093/bioinformatics/btg283, 14594712.
    • (2003) Bioinformatics , vol.19 , pp. 2072-2978
    • Huang, X.1    W, P.2
  • 10
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • R T. Regression shrinkage and selection via the lasso. J Royal Statist Soc B 1996, 58:267-288.
    • (1996) J Royal Statist Soc B , vol.58 , pp. 267-288
    • R, T.1
  • 12
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L B. Random forests. Machine Learning 2001, 45:5-32.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • L, B.1
  • 14
    • 33847096395 scopus 로고    scopus 로고
    • Bias in random forest variable importance measures: illustrations, sources and a solution
    • 10.1186/1471-2105-8-25, 1796903, 17254353
    • Strobl C, Boulesteix AL, Zeileis A, Hothorn. Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinformatics 2007, 8:25. 10.1186/1471-2105-8-25, 1796903, 17254353.
    • (2007) BMC Bioinformatics , vol.8 , pp. 25
    • Strobl, C.1    Boulesteix, A.L.2    Zeileis, A.3    Hothorn4
  • 15
    • 48549095457 scopus 로고    scopus 로고
    • Conditional variable importance for random forests
    • 10.1186/1471-2105-9-307, 2491635, 18620558
    • Strobl C, Boulesteix AL, Kneib T, Augustin T, Zeileis A. Conditional variable importance for random forests. BMC Bioinformatics 2008, 9:307. 10.1186/1471-2105-9-307, 2491635, 18620558.
    • (2008) BMC Bioinformatics , vol.9 , pp. 307
    • Strobl, C.1    Boulesteix, A.L.2    Kneib, T.3    Augustin, T.4    Zeileis, A.5
  • 19
    • 33645861937 scopus 로고    scopus 로고
    • Statistical inference for variable importance
    • van der Laan MJ. Statistical inference for variable importance. Int J Biostat 2006, 2:Article 2.
    • (2006) Int J Biostat , vol.2
    • van der Laan, M.J.1
  • 20
    • 46149139403 scopus 로고
    • A new approach to causal inference in mortality studies with sustained exposure periods - application to control of the healthy worker survivor effect
    • Robins JM. A new approach to causal inference in mortality studies with sustained exposure periods - application to control of the healthy worker survivor effect. Mathematical Modelling 1986, 7:1393-1512.
    • (1986) Mathematical Modelling , vol.7 , pp. 1393-1512
    • Robins, J.M.1
  • 23
    • 58149417330 scopus 로고
    • Estimating Causal Effects of Treatments in Randomized and Nonrandomized Studies
    • Rubin DB. Estimating Causal Effects of Treatments in Randomized and Nonrandomized Studies. Journal of Educational Psychology 1974, 66:688-701.
    • (1974) Journal of Educational Psychology , vol.66 , pp. 688-701
    • Rubin, D.B.1
  • 27
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: a practical and powerful approach to multiple testing
    • Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Statist Soc B 1995, 57:289-300.
    • (1995) J Royal Statist Soc B , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.