메뉴 건너뛰기




Volumn 6871 LNAI, Issue , 2011, Pages 265-279

A practical approach for clustering transaction data

Author keywords

clustering; Data mining; transaction data

Indexed keywords

CLUSTERING; DATA SETS; EMPIRICAL STUDIES; MULTIPLE PARAMETERS; OBJECTIVE FUNCTIONS; OVERLAPPING CLUSTERS; PARAMETERS SETTING; REAL-LIFE APPLICATIONS; SYNTHETIC AND REAL DATA; TRANSACTION DATA;

EID: 80052317302     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-23199-5_20     Document Type: Conference Paper
Times cited : (10)

References (20)
  • 6
    • 84958744091 scopus 로고    scopus 로고
    • Interactive clustering for transaction data
    • Kambayashi, Y., Winiwarter, W., Arikawa, M. (eds.) DaWaK 2001. Springer, Heidelberg
    • Xiao, Y., Dunham, M.H.: Interactive clustering for transaction data. In: Kambayashi, Y., Winiwarter, W., Arikawa, M. (eds.) DaWaK 2001. LNCS, vol. 2114, pp. 121-130. Springer, Heidelberg (2001)
    • (2001) LNCS , vol.2114 , pp. 121-130
    • Xiao, Y.1    Dunham, M.H.2
  • 9
    • 33847018674 scopus 로고    scopus 로고
    • GHIC: A Hierarchical Pattern-Based Clustering Algorithm for Grouping Web Transactions
    • Yang, Y., Padmanabhan, B.: GHIC: A Hierarchical Pattern-Based Clustering Algorithm for Grouping Web Transactions. IEEE Transactions on Knowledge and Data Engineering 17(9), 1300-1304 (2005)
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.9 , pp. 1300-1304
    • Yang, Y.1    Padmanabhan, B.2
  • 12
    • 29144443500 scopus 로고    scopus 로고
    • Adherence clustering: An efficient method for mining market-Basket clusters
    • Yun, C.-H., Chuang, K.-T., Chen, M.-S.: Adherence clustering: an efficient method for mining market-Basket clusters. Information systems 31(3), 170-186 (2004)
    • (2004) Information Systems , vol.31 , Issue.3 , pp. 170-186
    • Yun, C.-H.1    Chuang, K.-T.2    Chen, M.-S.3
  • 14
    • 26844445118 scopus 로고    scopus 로고
    • Subspace clustering for high dimensional categorical data
    • Gan, G., Wu, J.: Subspace clustering for high dimensional categorical data. ACM SIGKDD Explorations News letter 6(2), 87-94 (2004)
    • (2004) ACM SIGKDD Explorations News Letter , vol.6 , Issue.2 , pp. 87-94
    • Gan, G.1    Wu, J.2
  • 17
    • 33845981111 scopus 로고    scopus 로고
    • CLICKS: An Effective Algorithm for Mining Subspace Clusters in Categorical Datasets
    • Zaki, M., Peters, M., Assent, I., Seidl, T.: CLICKS: An Effective Algorithm for Mining Subspace Clusters in Categorical Datasets. Data and Knowledge Engineering 60(1), 51-70 (2007)
    • (2007) Data and Knowledge Engineering , vol.60 , Issue.1 , pp. 51-70
    • Zaki, M.1    Peters, M.2    Assent, I.3    Seidl, T.4
  • 18
    • 0034228041 scopus 로고    scopus 로고
    • ROCK: A Robust Clustering Algorithm for Categorical Attributes
    • Guha, S., Rastogi, R., Shim, K.: ROCK: A Robust Clustering Algorithm for Categorical Attributes. Information Systems 25(5), 345-366 (2001)
    • (2001) Information Systems , vol.25 , Issue.5 , pp. 345-366
    • Guha, S.1    Rastogi, R.2    Shim, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.