메뉴 건너뛰기




Volumn 70, Issue 11, 2011, Pages 984-1003

A unique property of single-link distance and its application in data clustering

Author keywords

Hierarchical clustering; Icluster; Isolation compactness; Monotonic sequence; Single link cluster

Indexed keywords

HIER-ARCHICAL CLUSTERING; ICLUSTER; ISOLATION COMPACTNESS; MONOTONIC SEQUENCE; SINGLE-LINK CLUSTER;

EID: 80052285367     PISSN: 0169023X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.datak.2011.07.003     Document Type: Article
Times cited : (11)

References (32)
  • 1
    • 79955889987 scopus 로고    scopus 로고
    • A log-linear approach to mining significant graph-relational patterns
    • Christopher A. Besemann, Jianfei Wu, and Anne M. Denton A log-linear approach to mining significant graph-relational patterns Data Knowl. Eng. 70 6 June 2011 527 554
    • (2011) Data Knowl. Eng. , vol.70 , Issue.6 , pp. 527-554
    • Besemann, C.A.1    Wu, J.2    Denton, A.M.3
  • 2
    • 79960660763 scopus 로고    scopus 로고
    • Estimating PageRank on graph streams
    • Article 13
    • Atish Das Sarma, Sreenivas Gollapudi, and Rina Panigrahy Estimating PageRank on graph streams J. ACM 58 3 June 2011 Article 13
    • (2011) J. ACM , vol.58 , Issue.3
    • Das Sarma, A.1    Gollapudi, S.2    Panigrahy, R.3
  • 3
    • 78650812599 scopus 로고    scopus 로고
    • A novel keyword search paradigm in relational databases: Object summaries
    • Georgios John Fakas A novel keyword search paradigm in relational databases: object summaries Data Knowl. Eng. 70 2 February 2011 208 229
    • (2011) Data Knowl. Eng. , vol.70 , Issue.2 , pp. 208-229
    • Fakas, G.J.1
  • 4
    • 79951676428 scopus 로고    scopus 로고
    • Document clustering using synthetic cluster prototypes
    • Argyris Kalogeratos, and Aristidis Likas Document clustering using synthetic cluster prototypes Data Knowl. Eng. 70 3 March 2011 284 306
    • (2011) Data Knowl. Eng. , vol.70 , Issue.3 , pp. 284-306
    • Kalogeratos, A.1    Likas, A.2
  • 6
    • 84944178665 scopus 로고
    • Hierarchical grouping to optimize an objective function
    • J.H. Ward Hierarchical grouping to optimize an objective function J. Am. Statist. Assoc. 58 1963 236 244
    • (1963) J. Am. Statist. Assoc. , vol.58 , pp. 236-244
    • Ward, J.H.1
  • 7
    • 21944442892 scopus 로고    scopus 로고
    • BIRCH: A new data clustering algorithm and its applications
    • T. Zhang, R. Ramakrishnan, and M. Livny BIRCH: a new data clustering algorithm and its applications J. Data Min. Knowl. Discov. 1 2 1997 141 182
    • (1997) J. Data Min. Knowl. Discov. , vol.1 , Issue.2 , pp. 141-182
    • Zhang, T.1    Ramakrishnan, R.2    Livny, M.3
  • 8
    • 0032091595 scopus 로고    scopus 로고
    • CURE: An efficient clustering algorithm for large databases
    • S. Guha, R. Rastogi, and K. Shim CURE: an efficient clustering algorithm for large databases Proceedings of ACM SIGMOD International Conference on Management of Data 1998 73 84 New York (Pubitemid 128655958)
    • (1998) SIGMOD Record , vol.27 , Issue.2 , pp. 73-84
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 9
    • 0032686723 scopus 로고    scopus 로고
    • Chameleon: Hierarchical clustering using dynamic modeling
    • G. Karypis, E.-H. (Sam) Han, and V. Kumar Chameleon: hierarchical clustering using dynamic modeling Computer 32 8 Aug. 1999 68 75
    • (1999) Computer , vol.32 , Issue.8 , pp. 68-75
    • Karypis, G.1    Han, E.-H.2    Kumar, V.3
  • 11
    • 84891479270 scopus 로고    scopus 로고
    • MIC: Mutual information based hierarchical clustering
    • Springer New York, NY, USA
    • A. Kraskov, and P. Grassberger MIC: mutual information based hierarchical clustering Information Theory Statistical Learning 2008 Springer New York, NY, USA 101 123
    • (2008) Information Theory Statistical Learning , pp. 101-123
    • Kraskov, A.1    Grassberger, P.2
  • 16
    • 38049025576 scopus 로고    scopus 로고
    • The validity measurement of fuzzy c-means classifier for remotely sensed images
    • F. Chen, and J.M. Lee The validity measurement of fuzzy c-means classifier for remotely sensed images Proc. Asian Conf. Remote Sensing 2001
    • (2001) Proc. Asian Conf. Remote Sensing
    • Chen, F.1    Lee, J.M.2
  • 21
    • 0037399775 scopus 로고    scopus 로고
    • Cluster validation techniques for genome expression data
    • N. Bolshakova, and F. Azuaje Cluster validation techniques for genome expression data Signal Process. 83 4 2003 825 833
    • (2003) Signal Process. , vol.83 , Issue.4 , pp. 825-833
    • Bolshakova, N.1    Azuaje, F.2
  • 23
    • 85170282443 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases with noise
    • M. Ester, H. Kriegel, J. Sander, and X. Xu A density-based algorithm for discovering clusters in large spatial databases with noise Proc. KDD 1996 226 231
    • (1996) Proc. KDD , pp. 226-231
    • Ester, M.1    Kriegel, H.2    Sander, J.3    Xu, X.4
  • 26
    • 34347333289 scopus 로고    scopus 로고
    • A local-density based spatial clustering algorithm with noise
    • DOI 10.1016/j.is.2006.10.006, PII S0306437906000871
    • L. Duan, L. Xu, F. Guo, J. Lee, and B. Yan A local-density based spatial clustering algorithm with noise Inf. Syst. 32 7 2007 978 986 (Pubitemid 47017576)
    • (2007) Information Systems , vol.32 , Issue.7 , pp. 978-986
    • Duan, L.1    Xu, L.2    Guo, F.3    Lee, J.4    Yan, B.5
  • 28
    • 84055204369 scopus 로고    scopus 로고
    • P-DBSCAN: A density based clustering algorithm for exploration and analysis of attractive areas using collections of geo-tagged photos
    • S. Kisilevich, F. Mansmann, and D. Keim P-DBSCAN: A density based clustering algorithm for exploration and analysis of attractive areas using collections of geo-tagged photos Proceeding of COM.Geo 2010
    • (2010) Proceeding of COM.Geo
    • Kisilevich, S.1    Mansmann, F.2    Keim, D.3
  • 31
    • 0003704318 scopus 로고    scopus 로고
    • Univ. of California, Irvine, Dept. of Information and Computer Science
    • S.D. Bay The UCI KDD Archive http://kdd.ics.uci.edu Univ. of California, Irvine, Dept. of Information and Computer Science
    • The UCI KDD Archive
    • Bay, S.D.1
  • 32
    • 0029388103 scopus 로고
    • A discrepancy measure for improved clustering
    • L. Gupta, and R. Tammana A discrepancy measure for improved clustering Pattern Recognit. vol. 28-10 1995 l627 l1634
    • (1995) Pattern Recognit. , vol.2810
    • Gupta, L.1    Tammana, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.