메뉴 건너뛰기




Volumn 13, Issue 2, 2011, Pages 450-465

Information Theoretic Hierarchical Clustering

Author keywords

Hierarchical clustering; Information theory; Proximity measure; Quadratic mutual information; R nyi s entropy

Indexed keywords


EID: 80052277310     PISSN: None     EISSN: 10994300     Source Type: Journal    
DOI: 10.3390/e13020450     Document Type: Article
Times cited : (11)

References (32)
  • 1
    • 0002975203 scopus 로고
    • On the generalized distance in statistics
    • Mahalanobis, P.C. On the generalized distance in statistics. Proc. Natl. Inst. Sci. India 1936, 12, 49–55.
    • (1936) Proc. Natl. Inst. Sci. India , vol.12 , pp. 49-55
    • Mahalanobis, P.C.1
  • 3
    • 0021583718 scopus 로고
    • FCM: The fuzzy c-means clustering algorithm
    • Bezdek, J.C.; Ehrlich, R. FCM: The fuzzy c-means clustering algorithm. Comput. Geosci. 1984, 10, 191–203.
    • (1984) Comput. Geosci , vol.10 , pp. 191-203
    • Bezdek, J.C.1    Ehrlich, R.2
  • 4
    • 0014129195 scopus 로고
    • Hierarchical clustering schemes
    • Johnson, S.C. Hierarchical clustering schemes. Psychometrika 1967, 32, 241–254.
    • (1967) Psychometrika , vol.32 , pp. 241-254
    • Johnson, S.C.1
  • 5
    • 0030104449 scopus 로고    scopus 로고
    • Artificial neural networks: A tutorial
    • Jain, A.K.; Mao, J.; Mohiuddin, K.M. Artificial neural networks: A tutorial. Computer 1996, 29, 31–44.
    • (1996) Computer , vol.29 , pp. 31-44
    • Jain, A.K.1    Mao, J.2    Mohiuddin, K.M.3
  • 8
    • 84898060177 scopus 로고    scopus 로고
    • Finding metric structure in information theoretic clustering
    • COLT, Helsinki, Finland, July
    • Chaudhuri, K.; McGregor, A. Finding metric structure in information theoretic clustering. In Conference on Learning Theory, COLT, Helsinki, Finland, July 2008.
    • (2008) Conference on Learning Theory
    • Chaudhuri, K.1    McGregor, A.2
  • 9
    • 0033556862 scopus 로고    scopus 로고
    • A unifying review of linear Gaussian models
    • Roweis, S.; Ghahramani, Z. A unifying review of linear Gaussian models. Neural Comput. 1999, 11, 305–345.
    • (1999) Neural Comput , vol.11 , pp. 305-345
    • Roweis, S.1    Ghahramani, Z.2
  • 10
    • 0001473437 scopus 로고
    • On estimation of a probability density function and mode
    • Parzen, E. On estimation of a probability density function and mode. Ann. Math. Statist. 1962, 33, 1065–1076.
    • (1962) Ann. Math. Statist , vol.33 , pp. 1065-1076
    • Parzen, E.1
  • 11
    • 84891479270 scopus 로고    scopus 로고
    • MIC: mutual information based hierarchical clustering
    • Springer: New York, NY, USA
    • Kraskov, A.; Grassberger, P. MIC: mutual information based hierarchical clustering. In Information Theory Statistical Learning; Springer: New York, NY, USA, 2008, pp. 101–123.
    • (2008) Information Theory Statistical Learning , pp. 101-123
    • Kraskov, A.1    Grassberger, P.2
  • 12
    • 1842450622 scopus 로고    scopus 로고
    • Gene clustering based on clusterwide mutual information
    • Zhou, X.; Wang, X.; Dougherty, E.R.; Russ, D.; Suh, E. Gene clustering based on clusterwide mutual information. J. Comput. Biol. 2004, 11, 147–161.
    • (2004) J. Comput. Biol , vol.11 , pp. 147-161
    • Zhou, X.1    Wang, X.2    Dougherty, E.R.3    Russ, D.4    Suh, E.5
  • 14
    • 33845299971 scopus 로고    scopus 로고
    • Information theoretic learning
    • Haykin, S., Ed.; Wiley: New York, NY, USA
    • Principe, J.C.; Xu, D.; Fisher, J. Information theoretic learning. In Unsupervised Adaptive Filtering, Haykin, S., Ed.; Wiley: New York, NY, USA, 2000; pp. 265–319.
    • (2000) Unsupervised Adaptive Filtering , pp. 265-319
    • Principe, J.C.1    Xu, D.2    Fisher, J.3
  • 16
    • 1942450610 scopus 로고    scopus 로고
    • Feature extraction by non parametric mutual information maximization
    • Torkkola, K. Feature extraction by non parametric mutual information maximization. J. Mach. Learn. Res. 2003, 3, 1438.
    • (2003) J. Mach. Learn. Res , vol.3 , pp. 1438
    • Torkkola, K.1
  • 17
    • 0032205802 scopus 로고    scopus 로고
    • Rate-distortion optimization for video compression
    • Sullivan, G.J.; Wiegand, T. Rate-distortion optimization for video compression. Signal Process. Mag. IEEE 2002, 15, 74–90.
    • (2002) Signal Process. Mag. IEEE , vol.15 , pp. 74-90
    • Sullivan, G.J.1    Wiegand, T.2
  • 18
    • 84940644968 scopus 로고
    • A mathematical theory of communication
    • Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423.
    • (1948) Bell Syst. Tech. J , vol.27 , pp. 379-423
    • Shannon, C.E.1
  • 22
    • 77956554104 scopus 로고    scopus 로고
    • Differential entropic clustering of multivariate gaussians
    • Davis, J.V.; Dhillon, I. Differential entropic clustering of multivariate gaussians. Adv. Neural Inf. Process. Syst. 2007, 19, 337.
    • (2007) Adv. Neural Inf. Process. Syst , vol.19 , pp. 337
    • Davis, J.V.1    Dhillon, I.2
  • 23
    • 0032686723 scopus 로고    scopus 로고
    • Chameleon: Hierarchical clustering using dynamic modeling
    • Karypis, G.; Han, E.H.; Kumar, V. Chameleon: Hierarchical clustering using dynamic modeling. Computer 1999, 32, 68–75.
    • (1999) Computer , vol.32 , pp. 68-75
    • Karypis, G.1    Han, E.H.2    Kumar, V.3
  • 24
    • 0035279319 scopus 로고    scopus 로고
    • Cure: An efficient clustering algorithm for large databases
    • Guha, S.; Rastogi, R.; Shim, K. Cure: An efficient clustering algorithm for large databases. Inf. Syst. 2001, 26, 35–58.
    • (2001) Inf. Syst , vol.26 , pp. 35-58
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 27
    • 0002263953 scopus 로고
    • The irises of the Gaspe Peninsula
    • Anderson, E. The irises of the Gaspe Peninsula. Bull. Am. IRIS Soc. 1935, 59, 2–5.
    • (1935) Bull. Am. IRIS Soc , vol.59 , pp. 2-5
    • Anderson, E.1
  • 28
    • 0000521616 scopus 로고    scopus 로고
    • Superparamagnetic clustering of data
    • Blatt, M.; Wiseman, S.; Domany, E. Superparamagnetic clustering of data. Phys. Rev. Lett. 1996, 76, 3251–3254.
    • (1996) Phys. Rev. Lett , vol.76 , pp. 3251-3254
    • Blatt, M.1    Wiseman, S.2    Domany, E.3
  • 30
    • 0012018345 scopus 로고
    • Comparison of classifiers in high dimensional settings
    • Aeberhard, S.; Coomans, D.; De Vel, O. Comparison of classifiers in high dimensional settings. Tech. Rep. 1992, 92–102.
    • (1992) Tech. Rep , pp. 92-102
    • Aeberhard, S.1    Coomans, D.2    De Vel, O.3
  • 31
    • 0242679438 scopus 로고    scopus 로고
    • Finding the number of clusters in a dataset
    • Sugar, C.A.; James, G.M. Finding the number of clusters in a dataset. J. Am. Statist. Assn. 2003, 98, 750–763.
    • (2003) J. Am. Statist. Assn , vol.98 , pp. 750-763
    • Sugar, C.A.1    James, G.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.