-
1
-
-
4544345025
-
Adaptive routing with end-to-end feedback: Distributed learning and geometric approaches
-
ACM Press
-
Baruch Awerbuch and Robert D. Kleinberg. Adaptive routing with end-to-end feedback: distributed learning and geometric approaches. In STOC, pages 45-53. ACM Press, 2004.
-
(2004)
STOC
, pp. 45-53
-
-
Awerbuch, B.1
Kleinberg, R.D.2
-
2
-
-
2342490453
-
Learning functions represented as multiplicity automata
-
Amos Beimel, Francesco Bergadano, Nader H. Bshouty, Eyal Kushilevitz, and Stefano Varricchio. Learning functions represented as multiplicity automata. J. ACM, 47 (3):506-530, 2000.
-
(2000)
J. ACM
, vol.47
, Issue.3
, pp. 506-530
-
-
Beimel, A.1
Bergadano, F.2
Bshouty, N.H.3
Kushilevitz, E.4
Varricchio, S.5
-
4
-
-
31144460375
-
An ε-optimal grid-based algorithm for partially observable markov decision processes
-
Morgan Kaufmann
-
B. Bonet. An ε-optimal grid-based algorithm for Partially Observable Markov Decision Processes. In Proc. 19th International Conf. on Machine Learning, pages 51-58. Morgan Kaufmann, 2002.
-
(2002)
Proc. 19th International Conf. on Machine Learning
, pp. 51-58
-
-
Bonet, B.1
-
5
-
-
0031385391
-
A heuristic variable grid solution method for pomdps
-
R. Brafman. A heuristic variable grid solution method for pomdps. In AAAI-97, pages 727-733, 1997.
-
(1997)
AAAI-97
, pp. 727-733
-
-
Brafman, R.1
-
6
-
-
0015018335
-
Realization by stochastic finite automaton
-
J.W Carlyle and A. Paz. Realization by stochastic finite automaton. J. Comput. Syst. Sci., 5:26-40, 1971.
-
(1971)
J. Comput. Syst. Sci.
, vol.5
, pp. 26-40
-
-
Carlyle, J.W.1
Paz, A.2
-
7
-
-
0000692177
-
Matrices dehankel
-
M. Fliess. Matrices dehankel. J. Math. Pures Appl., 53: 197-222, 1974.
-
(1974)
J. Math. Pures Appl.
, vol.53
, pp. 197-222
-
-
Fliess, M.1
-
8
-
-
57049103166
-
A heuristic variable-grid solution method for pomdps
-
M. Hauskrecht. A heuristic variable-grid solution method for pomdps. In AAAI-97, pages 734-739, 1997.
-
(1997)
AAAI-97
, pp. 734-739
-
-
Hauskrecht, M.1
-
10
-
-
0000494894
-
Computationally feasible bounds for partially observed markov decision processes
-
W. S. Lovejoy. Computationally feasible bounds for partially observed markov decision processes. Operations Research, 39(1):162-175, 1991.
-
(1991)
Operations Research
, vol.39
, Issue.1
, pp. 162-175
-
-
Lovejoy, W.S.1
-
11
-
-
0036374190
-
Nonapproximability results for partially observable Markov decision processes
-
C. Lusena, J. Goldsmith, and M. Mundhenk. Nonapproximability results for partially observable markov decision processes. Journal of Artificial Intelligence Research, 14:83-103, 2001. (Pubitemid 33738060)
-
(2001)
Journal of Artificial Intelligence Research
, vol.14
, pp. 83-103
-
-
Lusena, C.1
Goldsmith, J.2
Mundhenk, M.3
-
12
-
-
50549180615
-
On the definition of a family of automata
-
M.P Shlitzenberger. On the definition of a family of automata. Inf. Control, 4:245-270, 1961.
-
(1961)
Inf. Control
, vol.4
, pp. 245-270
-
-
Shlitzenberger, M.P.1
-
15
-
-
1942452236
-
Learning predictive state representations
-
Satinder Singh, Michael Littman, Nicholas Jong, David Pardoe, and Peter Stone. Learning predictive state representations. In Proceedings of the Twentieth International Conference on Machine Learning (ICML), pages 712-719, 2003.
-
(2003)
Proceedings of the Twentieth International Conference on Machine Learning (ICML
, pp. 712-719
-
-
Singh, S.1
Littman, M.2
Jong, N.3
Pardoe, D.4
Stone, P.5
-
16
-
-
0028497385
-
An upper bound on the loss from approximate optimal-value functions
-
Satinder P. Singh and Richard C. Yee. An upper bound on the loss from approximate optimal-value functions. Machine Learning, 16(3):227-233, 1994.
-
(1994)
Machine Learning
, vol.16
, Issue.3
, pp. 227-233
-
-
Singh, S.P.1
Yee, R.C.2
|