-
1
-
-
0001025146
-
Query learning strategies using boosting and bagging
-
N. Abe and H. Mamitsuka. Query learning strategies using boosting and bagging. In Proceedings of ICML, pages 1-9, 1998.
-
(1998)
Proceedings of ICML
, pp. 1-9
-
-
Abe, N.1
Mamitsuka, H.2
-
2
-
-
33750334600
-
A selective sampling strategy for label ranking
-
Machine Learning: ECML 2006 - 17th European Conference on Machine Learning, Proceedings
-
M. Amini, N. Usunier, F. Laviolette, A. Lacasse, and P. Gallinari. A selective sampling strategy for label ranking. In Proceedings of ECML, pages 18-29. 2006. (Pubitemid 44618818)
-
(2006)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
, vol.4212
, pp. 18-29
-
-
Amini, M.1
Usunier, N.2
Laviolette, F.3
Lacasse, A.4
Gallinari, P.5
-
3
-
-
80053342456
-
Domain adaptation with structural correspondence learning
-
J. Blitzer, R. Mcdonald, and F. Pereira. Domain adaptation with structural correspondence learning. In Proceedings of EMNLP, pages 120-128, 2006.
-
(2006)
Proceedings of EMNLP
, pp. 120-128
-
-
Blitzer, J.1
Mcdonald, R.2
Pereira, F.3
-
4
-
-
0030211964
-
Bagging predictors
-
L. Breiman. Bagging predictors. Machine Learning, 24:123-140, August 1996. (Pubitemid 126724382)
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
6
-
-
84860501619
-
Domain adaptation with active learning for word sense disambiguation
-
Y. S. Chan and H. T. Ng. Domain adaptation with active learning for word sense disambiguation. In Proceedings of ACL, pages 49-56, 2007.
-
(2007)
Proceedings of ACL
, pp. 49-56
-
-
Chan, Y.S.1
Ng, H.T.2
-
7
-
-
74549208546
-
Expected reciprocal rank for graded relevance
-
O. Chapelle, D. Metzler, Y. Zhang, and P. Grinspan. Expected reciprocal rank for graded relevance. In Proceedings of CIKM, pages 621-630, 2009.
-
(2009)
Proceedings of CIKM
, pp. 621-630
-
-
Chapelle, O.1
Metzler, D.2
Zhang, Y.3
Grinspan, P.4
-
8
-
-
77956199737
-
Multi-task learning for boosting with application to web search ranking
-
O. Chapelle, P. K. Shivaswamy, S. Vadrevu, K. Q. Weinberger, Y. Zhang, and B. L. Tseng. Multi-task learning for boosting with application to web search ranking. In Proceedings of SIGKDD, pages 1189-1198, 2010.
-
(2010)
Proceedings of SIGKDD
, pp. 1189-1198
-
-
Chapelle, O.1
Shivaswamy, P.K.2
Vadrevu, S.3
Weinberger, K.Q.4
Zhang, Y.5
Tseng, B.L.6
-
9
-
-
77953625629
-
Knowledge transfer for cross domain learning to rank
-
D. Chen, Y. Xiong, J. Yan, G.-R. Xue, G. Wang, and Z. Chen. Knowledge transfer for cross domain learning to rank. Information Retrieval, 13(3):236-253, 2009.
-
(2009)
Information Retrieval
, vol.13
, Issue.3
, pp. 236-253
-
-
Chen, D.1
Xiong, Y.2
Yan, J.3
Xue, G.-R.4
Wang, G.5
Chen, Z.6
-
10
-
-
62449102958
-
Transrank: A novel algorithm for transfer of rank learning
-
D. Chen, J. Yan, G. Wang, Y. Xiong, W. Fan, and Z. Chen. Transrank: A novel algorithm for transfer of rank learning. In IEEE International Conference on Data Mining Workshops, pages 106-115, 2008.
-
(2008)
IEEE International Conference on Data Mining Workshops
, pp. 106-115
-
-
Chen, D.1
Yan, J.2
Wang, G.3
Xiong, Y.4
Fan, W.5
Chen, Z.6
-
11
-
-
70349250040
-
Trada: Tree based ranking function adaptation
-
K. Chen, R. Lu, C. Wong, G. Sun, L. Heck, and B. Tseng. Trada: Tree based ranking function adaptation. In Proceedings of CIKM, pages 1143-1152, 2008.
-
(2008)
Proceedings of CIKM
, pp. 1143-1152
-
-
Chen, K.1
Lu, R.2
Wong, C.3
Sun, G.4
Heck, L.5
Tseng, B.6
-
12
-
-
85152628923
-
Committee-based sampling for training probabilistic classifiers
-
I. Dagan and S. P. Engelson. Committee-based sampling for training probabilistic classifiers. In Proceedings of ICML, pages 150-157, 1995.
-
(1995)
Proceedings of ICML
, pp. 150-157
-
-
Dagan, I.1
Engelson, P.S.2
-
13
-
-
84860513476
-
Frustratingly easy domain adaptation
-
H. Daumé III. Frustratingly easy domain adaptation. In Proceedings of ACL, pages 256-263, 2007.
-
(2007)
Proceedings of ACL
, pp. 256-263
-
-
Daumé III, H.1
-
15
-
-
56449103935
-
Optimizing estimated loss reduction for active sampling in rank learning
-
P. Donmez and J. G. Carbonell. Optimizing estimated loss reduction for active sampling in rank learning. In Proceedings of ICML, pages 248-255, 2008.
-
(2008)
Proceedings of ICML
, pp. 248-255
-
-
Donmez, P.1
Carbonell, J.G.2
-
16
-
-
67650696919
-
Active sampling for rank learning via optimizing the area under the roc curve
-
P. Donmez and J. G. Carbonell. Active sampling for rank learning via optimizing the area under the roc curve. In Proceedings of ECIR, pages 78-89, 2009.
-
(2009)
Proceedings of ECIR
, pp. 78-89
-
-
Donmez, P.1
Carbonell, J.G.2
-
17
-
-
77956206577
-
Model adaptation via model interpolation and boosting for web search ranking
-
J. Gao, Q. Wu, C. Burges, K. Svore, Y. Su, N. Khan, S. Shah, and H. Zhou. Model adaptation via model interpolation and boosting for web search ranking. In Proceedings of EMNLP, pages 505-513, 2009.
-
(2009)
Proceedings of EMNLP
, pp. 505-513
-
-
Gao, J.1
Wu, Q.2
Burges, C.3
Svore, K.4
Su, Y.5
Khan, N.6
Shah, S.7
Zhou, H.8
-
18
-
-
77956027391
-
Learning to rank only using training data from related domain
-
W. Gao, P. Cai, K.-F. Wong, and A. Zhou. Learning to rank only using training data from related domain. In Proceedings of SIGIR, pages 162-169, 2010.
-
(2010)
Proceedings of SIGIR
, pp. 162-169
-
-
Gao, W.1
Cai, P.2
Wong, K.-F.3
Zhou, A.4
-
19
-
-
74549115901
-
Ranking model adaptation for domain-specific search
-
B. Geng, L. Yang, C. Xu, and X.-S. Hua. Ranking model adaptation for domain-specific search. In Proceedings of CIKM, pages 197-206, 2009.
-
(2009)
Proceedings of CIKM
, pp. 197-206
-
-
Geng, B.1
Yang, L.2
Xu, C.3
Hua, X.-S.4
-
21
-
-
0033645041
-
IR evaluation methods for retrieving highly relevant documents
-
K. Jarvelin and J. Kekalainen. IR evaluation methods for retrieving highly relevant documents. In Proceedings of SIGIR, pages 41-48, 2000.
-
(2000)
Proceedings of SIGIR
, pp. 41-48
-
-
Jarvelin, K.1
Kekalainen, J.2
-
22
-
-
84860538689
-
Instance weighting for domain adaptation in nlp
-
J. Jiang and C. Zhai. Instance weighting for domain adaptation in nlp. In Proceedings of ACL, pages 264-271, 2007.
-
(2007)
Proceedings of ACL
, pp. 264-271
-
-
Jiang, J.1
Zhai, C.2
-
23
-
-
72449211067
-
A ranking approach to keyphrase extraction
-
X. Jiang, Y. Hu, and H. Li. A ranking approach to keyphrase extraction. In Proceedings of SIGIR, pages 756-757, 2009.
-
(2009)
Proceedings of SIGIR
, pp. 756-757
-
-
Jiang, X.1
Hu, Y.2
Li, H.3
-
24
-
-
85013879626
-
A sequential algorithm for training text classifiers
-
D. D. Lewis and W. A. Gale. A sequential algorithm for training text classifiers. In Proceedings of SIGIR, pages 3-12, 1994.
-
(1994)
Proceedings of SIGIR
, pp. 3-12
-
-
Lewis, D.D.1
Gale, W.A.2
-
25
-
-
78650966391
-
Hybrid active learning for cross-domain video concept detection
-
H. Li, Y. Shi, M.-Y. Chen, A. G. Hauptmann, and Z. Xiong. Hybrid active learning for cross-domain video concept detection. In Proceedings of the International Conference on Multimedia, pages 1003-1006, 2010.
-
(2010)
Proceedings of the International Conference on Multimedia
, pp. 1003-1006
-
-
Li, H.1
Shi, Y.2
Chen, M.-Y.3
Hauptmann, A.G.4
Xiong, Z.5
-
26
-
-
77956050440
-
Learning to rank audience for behavioral targeting
-
N. Liu, J. Yan, D. Shen, D. Chen, Z. Chen, and Y. Li. Learning to rank audience for behavioral targeting. In Proceedings of SIGIR, pages 719-720, 2010.
-
(2010)
Proceedings of SIGIR
, pp. 719-720
-
-
Liu, N.1
Yan, J.2
Shen, D.3
Chen, D.4
Chen, Z.5
Li, Y.6
-
28
-
-
77956039703
-
Active learning for ranking through expected loss optimization
-
B. Long, O. Chapelle, Y. Zhang, Y. Chang, Z. Zheng, and B. L. Tseng. Active learning for ranking through expected loss optimization. In Proceedings of SIGIR, pages 267-274, 2010.
-
(2010)
Proceedings of SIGIR
, pp. 267-274
-
-
Long, B.1
Chapelle, O.2
Zhang, Y.3
Chang, Y.4
Zheng, Z.5
Tseng, B.L.6
-
29
-
-
0000314722
-
Employing EM in pool-based active learning for text classification
-
A. McCallum and K. Nigam. Employing EM in pool-based active learning for text classification. In Proceedings of ICML, pages 350-358, 1998.
-
(1998)
Proceedings of ICML
, pp. 350-358
-
-
McCallum, A.1
Nigam, K.2
-
30
-
-
77954568972
-
LETOR: A benchmark collection for research on learning to rank for information retrieval
-
T. Qin, T.-Y. Liu, J. Xu, and H. Li. LETOR: A benchmark collection for research on learning to rank for information retrieval. Information Retrieval, 2010.
-
(2010)
Information Retrieval
-
-
Qin, T.1
Liu, T.-Y.2
Xu, J.3
Li, H.4
-
31
-
-
67149129014
-
-
MIT Press, Cambridge
-
J. Quiñonero-Candela, M. Sugiyama, A. Schwaighofer, and N. Lawrence. Dataset Shift in Machine Learning. MIT Press, Cambridge, 2009.
-
(2009)
Dataset Shift in Machine Learning
-
-
Quiñonero-Candela, J.1
Sugiyama, M.2
Schwaighofer, A.3
Lawrence, N.4
-
33
-
-
68949137209
-
Active learning literature survey
-
Technical report University of Wisconsin, Madison
-
B. Settles. Active learning literature survey. Technical report, Technical Report, Computer Sciences 1648, University of Wisconsin, Madison, 2010.
-
(2010)
Technical Report, Computer Sciences 1648
-
-
Settles, B.1
-
35
-
-
84885668422
-
Active feedback in ad hoc information retrieval
-
X. Shen and C. Zhai. Active feedback in ad hoc information retrieval. In Proceedings of SIGIR, pages 59-66, 2005.
-
(2005)
Proceedings of SIGIR
, pp. 59-66
-
-
Shen, X.1
Zhai, C.2
-
37
-
-
80052136505
-
Learning to rank answers on large online QA collections
-
M. Surdeanu, M. Ciaramita, and H. Zaragoza. Learning to rank answers on large online QA collections. In Proceedings of ACL, pages 719-727, 2008.
-
(2008)
Proceedings of ACL
, pp. 719-727
-
-
Surdeanu, M.1
Ciaramita, M.2
Zaragoza, H.3
-
40
-
-
74549186512
-
Heterogeneous cross domain ranking in latent space
-
B. Wang, J. Tang, W. Fan, S. Chen, Z. Yang, and Y. Liu. Heterogeneous cross domain ranking in latent space. In Proceedings of CIKM, pages 987-996, 2009.
-
(2009)
Proceedings of CIKM
, pp. 987-996
-
-
Wang, B.1
Tang, J.2
Fan, W.3
Chen, S.4
Yang, Z.5
Liu, Y.6
-
41
-
-
77955913110
-
Learning to rank tags
-
Z. Wang, J. Feng, C. Zhang, and S. Yan. Learning to rank tags. In Proceedings of the ACM International Conference on Image and Video Retrieval, pages 42-49, 2010.
-
(2010)
Proceedings of the ACM International Conference on Image and Video Retrieval
, pp. 42-49
-
-
Wang, Z.1
Feng, J.2
Zhang, C.3
Yan, S.4
-
42
-
-
57549100649
-
A Bayesian logistic regression model for active relevance feedback
-
Z. Xu and R. Akella. A bayesian logistic regression model for active relevance feedback. In Proceedings of SIGIR, pages 227-234, 2008.
-
(2008)
Proceedings of SIGIR
, pp. 227-234
-
-
Xu, Z.1
Akella, R.2
-
43
-
-
72449143174
-
Query sampling for ranking learning in web serach
-
L. Yang, L. Wang, B. Geng, and X.-S. Hua. Query sampling for ranking learning in web serach. In Proceedings of SIGIR, pages 754-755, 2009.
-
(2009)
Proceedings of SIGIR
, pp. 754-755
-
-
Yang, L.1
Wang, L.2
Geng, B.3
Hua, X.-S.4
-
44
-
-
72449142196
-
Deep versus shallow judgments in learning to rank
-
E. Yilmaz and S. Robertson. Deep versus shallow judgments in learning to rank. In Proceedings of SIGIR, pages 662-663, 2009.
-
(2009)
Proceedings of SIGIR
, pp. 662-663
-
-
Yilmaz, E.1
Robertson, S.2
-
46
-
-
14344263218
-
Learning and evaluating classifiers under sample selection bias
-
B. Zadrozny. Learning and evaluating classifiers under sample selection bias. In Proceedings of ICML, pages 114-121, 2004.
-
(2004)
Proceedings of ICML
, pp. 114-121
-
-
Zadrozny, B.1
|