메뉴 건너뛰기




Volumn , Issue , 2011, Pages 115-124

Relevant knowledge helps in choosing right teacher: Active query selection for ranking adaptation

Author keywords

Active learning; Query by committee; Ranking adaptation

Indexed keywords

ARTIFICIAL INTELLIGENCE; BUDGET CONTROL; COST EFFECTIVENESS; TEACHING;

EID: 80052127267     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2009916.2009935     Document Type: Conference Paper
Times cited : (18)

References (46)
  • 1
    • 0001025146 scopus 로고    scopus 로고
    • Query learning strategies using boosting and bagging
    • N. Abe and H. Mamitsuka. Query learning strategies using boosting and bagging. In Proceedings of ICML, pages 1-9, 1998.
    • (1998) Proceedings of ICML , pp. 1-9
    • Abe, N.1    Mamitsuka, H.2
  • 3
    • 80053342456 scopus 로고    scopus 로고
    • Domain adaptation with structural correspondence learning
    • J. Blitzer, R. Mcdonald, and F. Pereira. Domain adaptation with structural correspondence learning. In Proceedings of EMNLP, pages 120-128, 2006.
    • (2006) Proceedings of EMNLP , pp. 120-128
    • Blitzer, J.1    Mcdonald, R.2    Pereira, F.3
  • 4
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman. Bagging predictors. Machine Learning, 24:123-140, August 1996. (Pubitemid 126724382)
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 6
    • 84860501619 scopus 로고    scopus 로고
    • Domain adaptation with active learning for word sense disambiguation
    • Y. S. Chan and H. T. Ng. Domain adaptation with active learning for word sense disambiguation. In Proceedings of ACL, pages 49-56, 2007.
    • (2007) Proceedings of ACL , pp. 49-56
    • Chan, Y.S.1    Ng, H.T.2
  • 12
    • 85152628923 scopus 로고
    • Committee-based sampling for training probabilistic classifiers
    • I. Dagan and S. P. Engelson. Committee-based sampling for training probabilistic classifiers. In Proceedings of ICML, pages 150-157, 1995.
    • (1995) Proceedings of ICML , pp. 150-157
    • Dagan, I.1    Engelson, P.S.2
  • 13
    • 84860513476 scopus 로고    scopus 로고
    • Frustratingly easy domain adaptation
    • H. Daumé III. Frustratingly easy domain adaptation. In Proceedings of ACL, pages 256-263, 2007.
    • (2007) Proceedings of ACL , pp. 256-263
    • Daumé III, H.1
  • 15
    • 56449103935 scopus 로고    scopus 로고
    • Optimizing estimated loss reduction for active sampling in rank learning
    • P. Donmez and J. G. Carbonell. Optimizing estimated loss reduction for active sampling in rank learning. In Proceedings of ICML, pages 248-255, 2008.
    • (2008) Proceedings of ICML , pp. 248-255
    • Donmez, P.1    Carbonell, J.G.2
  • 16
    • 67650696919 scopus 로고    scopus 로고
    • Active sampling for rank learning via optimizing the area under the roc curve
    • P. Donmez and J. G. Carbonell. Active sampling for rank learning via optimizing the area under the roc curve. In Proceedings of ECIR, pages 78-89, 2009.
    • (2009) Proceedings of ECIR , pp. 78-89
    • Donmez, P.1    Carbonell, J.G.2
  • 18
    • 77956027391 scopus 로고    scopus 로고
    • Learning to rank only using training data from related domain
    • W. Gao, P. Cai, K.-F. Wong, and A. Zhou. Learning to rank only using training data from related domain. In Proceedings of SIGIR, pages 162-169, 2010.
    • (2010) Proceedings of SIGIR , pp. 162-169
    • Gao, W.1    Cai, P.2    Wong, K.-F.3    Zhou, A.4
  • 19
    • 74549115901 scopus 로고    scopus 로고
    • Ranking model adaptation for domain-specific search
    • B. Geng, L. Yang, C. Xu, and X.-S. Hua. Ranking model adaptation for domain-specific search. In Proceedings of CIKM, pages 197-206, 2009.
    • (2009) Proceedings of CIKM , pp. 197-206
    • Geng, B.1    Yang, L.2    Xu, C.3    Hua, X.-S.4
  • 21
    • 0033645041 scopus 로고    scopus 로고
    • IR evaluation methods for retrieving highly relevant documents
    • K. Jarvelin and J. Kekalainen. IR evaluation methods for retrieving highly relevant documents. In Proceedings of SIGIR, pages 41-48, 2000.
    • (2000) Proceedings of SIGIR , pp. 41-48
    • Jarvelin, K.1    Kekalainen, J.2
  • 22
    • 84860538689 scopus 로고    scopus 로고
    • Instance weighting for domain adaptation in nlp
    • J. Jiang and C. Zhai. Instance weighting for domain adaptation in nlp. In Proceedings of ACL, pages 264-271, 2007.
    • (2007) Proceedings of ACL , pp. 264-271
    • Jiang, J.1    Zhai, C.2
  • 23
    • 72449211067 scopus 로고    scopus 로고
    • A ranking approach to keyphrase extraction
    • X. Jiang, Y. Hu, and H. Li. A ranking approach to keyphrase extraction. In Proceedings of SIGIR, pages 756-757, 2009.
    • (2009) Proceedings of SIGIR , pp. 756-757
    • Jiang, X.1    Hu, Y.2    Li, H.3
  • 24
    • 85013879626 scopus 로고
    • A sequential algorithm for training text classifiers
    • D. D. Lewis and W. A. Gale. A sequential algorithm for training text classifiers. In Proceedings of SIGIR, pages 3-12, 1994.
    • (1994) Proceedings of SIGIR , pp. 3-12
    • Lewis, D.D.1    Gale, W.A.2
  • 29
    • 0000314722 scopus 로고    scopus 로고
    • Employing EM in pool-based active learning for text classification
    • A. McCallum and K. Nigam. Employing EM in pool-based active learning for text classification. In Proceedings of ICML, pages 350-358, 1998.
    • (1998) Proceedings of ICML , pp. 350-358
    • McCallum, A.1    Nigam, K.2
  • 30
    • 77954568972 scopus 로고    scopus 로고
    • LETOR: A benchmark collection for research on learning to rank for information retrieval
    • T. Qin, T.-Y. Liu, J. Xu, and H. Li. LETOR: A benchmark collection for research on learning to rank for information retrieval. Information Retrieval, 2010.
    • (2010) Information Retrieval
    • Qin, T.1    Liu, T.-Y.2    Xu, J.3    Li, H.4
  • 33
    • 68949137209 scopus 로고    scopus 로고
    • Active learning literature survey
    • Technical report University of Wisconsin, Madison
    • B. Settles. Active learning literature survey. Technical report, Technical Report, Computer Sciences 1648, University of Wisconsin, Madison, 2010.
    • (2010) Technical Report, Computer Sciences 1648
    • Settles, B.1
  • 35
    • 84885668422 scopus 로고    scopus 로고
    • Active feedback in ad hoc information retrieval
    • X. Shen and C. Zhai. Active feedback in ad hoc information retrieval. In Proceedings of SIGIR, pages 59-66, 2005.
    • (2005) Proceedings of SIGIR , pp. 59-66
    • Shen, X.1    Zhai, C.2
  • 37
    • 80052136505 scopus 로고    scopus 로고
    • Learning to rank answers on large online QA collections
    • M. Surdeanu, M. Ciaramita, and H. Zaragoza. Learning to rank answers on large online QA collections. In Proceedings of ACL, pages 719-727, 2008.
    • (2008) Proceedings of ACL , pp. 719-727
    • Surdeanu, M.1    Ciaramita, M.2    Zaragoza, H.3
  • 42
    • 57549100649 scopus 로고    scopus 로고
    • A Bayesian logistic regression model for active relevance feedback
    • Z. Xu and R. Akella. A bayesian logistic regression model for active relevance feedback. In Proceedings of SIGIR, pages 227-234, 2008.
    • (2008) Proceedings of SIGIR , pp. 227-234
    • Xu, Z.1    Akella, R.2
  • 43
    • 72449143174 scopus 로고    scopus 로고
    • Query sampling for ranking learning in web serach
    • L. Yang, L. Wang, B. Geng, and X.-S. Hua. Query sampling for ranking learning in web serach. In Proceedings of SIGIR, pages 754-755, 2009.
    • (2009) Proceedings of SIGIR , pp. 754-755
    • Yang, L.1    Wang, L.2    Geng, B.3    Hua, X.-S.4
  • 44
    • 72449142196 scopus 로고    scopus 로고
    • Deep versus shallow judgments in learning to rank
    • E. Yilmaz and S. Robertson. Deep versus shallow judgments in learning to rank. In Proceedings of SIGIR, pages 662-663, 2009.
    • (2009) Proceedings of SIGIR , pp. 662-663
    • Yilmaz, E.1    Robertson, S.2
  • 46
    • 14344263218 scopus 로고    scopus 로고
    • Learning and evaluating classifiers under sample selection bias
    • B. Zadrozny. Learning and evaluating classifiers under sample selection bias. In Proceedings of ICML, pages 114-121, 2004.
    • (2004) Proceedings of ICML , pp. 114-121
    • Zadrozny, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.