-
1
-
-
2942747947
-
Representing musical genre: A state of the art
-
J. J. Aucouturier and F. Pachet. Representing musical genre: A state of the art. J. New Music Research, 32(1):83-93, 2003.
-
(2003)
J. New Music Research
, vol.32
, Issue.1
, pp. 83-93
-
-
Aucouturier, J.J.1
Pachet, F.2
-
3
-
-
33751531805
-
Aggregate features and AdaBoost for music classification
-
J. Bergstra, N. Casagrande, D. Erhan, D. Eck, and B. Kgl. Aggregate features and AdaBoost for music classification. Machine Learning: Special Issue on Machine Learning in Music, 65(2-3):2-3, 2006.
-
(2006)
Machine Learning: Special Issue on Machine Learning in Music
, vol.65
, Issue.2-3
, pp. 2-3
-
-
Bergstra, J.1
Casagrande, N.2
Erhan, D.3
Eck, D.4
Kgl, B.5
-
5
-
-
68949141664
-
Combining instance-based learning and logistic regression for multilabel classification
-
W. Cheng and E. Hullermeier. Combining instance-based learning and logistic regression for multilabel classification. Machine Learning, 76(2-3):211-225, 2009.
-
(2009)
Machine Learning
, vol.76
, Issue.2-3
, pp. 211-225
-
-
Cheng, W.1
Hullermeier, E.2
-
6
-
-
1542369946
-
Interdisciplinary communities and research issues in music information retrieval
-
J. Futrelle and J. S. Downie. Interdisciplinary communities and research issues in music information retrieval. In Proc. Int'l Conf. Music Information Retrieval, pages 121-131, 2002.
-
(2002)
Proc. Int'l Conf. Music Information Retrieval
, pp. 121-131
-
-
Futrelle, J.1
Downie, J.S.2
-
7
-
-
78751507384
-
Obtaining bipartitions from score vectors for multi-label classification
-
M. Ioannou, G. Sakkas, G. Tsoumakas, and I. Vlahavas. Obtaining bipartitions from score vectors for Multi-Label classification. In Proc. Int'l Conf. Tools with Artificial Intelligence, pages 409-416, 2010.
-
(2010)
Proc. Int'l Conf. Tools with Artificial Intelligence
, pp. 409-416
-
-
Ioannou, M.1
Sakkas, G.2
Tsoumakas, G.3
Vlahavas, I.4
-
9
-
-
84892457941
-
Input-agreement: A new mechanism for collecting data using human computation games
-
E. Law and L. von Ahn. Input-agreement: a new mechanism for collecting data using human computation games. In Proc. Int'l Conf. Human Factors in Computing Systems, pages 1197-1206, 2009.
-
(2009)
Proc. Int'l Conf. Human Factors in Computing Systems
, pp. 1197-1206
-
-
Law, E.1
Von Ahn, L.2
-
10
-
-
80052114328
-
From multi-labeling to multi-domain-labeling: A novel two-dimensional approach to music genre classification
-
H. Lukashevich, J. Abeßer, C. Dittmar, and H. Grossmann. From multi-labeling to multi-domain-labeling: A novel two-dimensional approach to music genre classification. In Proc. Int'l Conf. Music Information Retrieval, pages 459-464, 2009.
-
(2009)
Proc. Int'l Conf. Music Information Retrieval
, pp. 459-464
-
-
Lukashevich, H.1
Abeßer, J.2
Dittmar, C.3
Grossmann, H.4
-
11
-
-
84873429683
-
Musical genre classification: Is it worth pursuing and how can it be improved?
-
C. McKay and I. Fujinaga. Musical genre classification: Is it worth pursuing and how can it be improved? In Proc. Int'l Conf. Music Information Retrieval, pages 101-106, 2006.
-
(2006)
Proc. Int'l Conf. Music Information Retrieval
, pp. 101-106
-
-
McKay, C.1
Fujinaga, I.2
-
12
-
-
72449148704
-
Improving automatic music tag annotation using stacked generalization of probabilistic svm outputs
-
S. R. Ness, A. Theocharis, G. Tzanetakis, and L. G. Martins. Improving automatic music tag annotation using stacked generalization of probabilistic svm outputs. In Proc. ACM Int'l Conf. Multimedia, pages 705-708, 2009.
-
(2009)
Proc. ACM Int'l Conf. Multimedia
, pp. 705-708
-
-
Ness, S.R.1
Theocharis, A.2
Tzanetakis, G.3
Martins, L.G.4
-
13
-
-
2942755503
-
Content management for electronic music distribution: The real issues
-
F. Pachet. Content management for electronic music distribution: The real issues. Comm. of the ACM, 46(4):71-75, 2003.
-
(2003)
Comm. of the ACM
, vol.46
, Issue.4
, pp. 71-75
-
-
Pachet, F.1
-
15
-
-
70350446810
-
Improving multi-label analysis of music titles: A large-scale validation of the correction hypothesis
-
F. Pachet and P. Roy. Improving multi-label analysis of music titles: A large-scale validation of the correction hypothesis. IEEE Trans. on Audio, Speech & Language Processing, 17(2):335-343, 2009.
-
(2009)
IEEE Trans. on Audio, Speech & Language Processing
, vol.17
, Issue.2
, pp. 335-343
-
-
Pachet, F.1
Roy, P.2
-
18
-
-
77952042089
-
Improving multilabel classification performance by using ensemble of multi-label classifiers
-
chapter 2 Springer Berlin Heidelberg
-
M. Tahir, J. Kittler, K. Mikolajczyk, and F. Yan. Improving multilabel classification performance by using ensemble of multi-label classifiers. In Multiple Classifier Systems, volume 5997, chapter 2, pages 11-21. Springer Berlin Heidelberg, 2010.
-
(2010)
Multiple Classifier Systems
, vol.5997
, pp. 11-21
-
-
Tahir, M.1
Kittler, J.2
Mikolajczyk, K.3
Yan, F.4
-
19
-
-
84873447495
-
Multilabel classification of music into emotions
-
K. Trohidis, G. Tsoumakas, G. Kalliris, and I. Vlahavas. Multilabel classification of music into emotions. In Proc. Int'l Conf. Music Information Retrieval, pages 325-330, 2008.
-
(2008)
Proc. Int'l Conf. Music Information Retrieval
, pp. 325-330
-
-
Trohidis, K.1
Tsoumakas, G.2
Kalliris, G.3
Vlahavas, I.4
-
23
-
-
0036648502
-
Musical genre classification of audio signals
-
DOI 10.1109/TSA.2002.800560, PII 1011092002800560
-
G. Tzanetakis and P. Cook. Musical genre classification of audio signals. In IEEE Trans. on Speech and Audio Processing, pages 293-302, 2002. (Pubitemid 34950067)
-
(2002)
IEEE Transactions on Speech and Audio Processing
, vol.10
, Issue.5
, pp. 293-302
-
-
Tzanetakis, G.1
Cook, P.2
-
24
-
-
84873586245
-
Are tags better than audio? The effect of joint use of tags and audio content features for artistic style clustering
-
D. Wang, T. Li, and M. Ogihara. Are tags better than audio? The effect of joint use of tags and audio content features for artistic style clustering. In Proc. Int'l Conf. Music Information Retrieval, pages 57-62, 2010.
-
(2010)
Proc. Int'l Conf. Music Information Retrieval
, pp. 57-62
-
-
Wang, D.1
Li, T.2
Ogihara, M.3
-
26
-
-
33947681316
-
ML-kNN: A lazy learning approach to multi-label learning
-
M. L. Zhang and Z. H. Zhou. ML-kNN: A lazy learning approach to multi-label learning. Pattern Recognition, 40(7):2038-2048, 2007.
-
(2007)
Pattern Recognition
, vol.40
, Issue.7
, pp. 2038-2048
-
-
Zhang, M.L.1
Zhou, Z.H.2
|