메뉴 건너뛰기




Volumn 5997 LNCS, Issue , 2010, Pages 11-21

Improving multilabel classification performance by using ensemble of multi-label classifiers

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION);

EID: 77952042089     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-12127-2_2     Document Type: Conference Paper
Times cited : (19)

References (18)
  • 1
    • 33646739998 scopus 로고    scopus 로고
    • Toward intelligent music information retrieval
    • DOI 10.1109/TMM.2006.870730
    • Li, T., Ogihara, M.: Toward intelligent music information retrieval. IEEE Trans. on Multimedia 8(3), 564-574 (2006) (Pubitemid 43751477)
    • (2006) IEEE Transactions on Multimedia , vol.8 , Issue.3 , pp. 564-574
    • Li, T.1    Ogihara, M.2
  • 2
    • 7444230008 scopus 로고    scopus 로고
    • Discriminative methods for multi-labeled classification
    • Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. Springer, Heidelberg
    • Godbole, S., Sarawagi, S.: Discriminative methods for multi-labeled classification. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 22-30. Springer, Heidelberg (2004)
    • (2004) LNCS (LNAI) , vol.3056 , pp. 22-30
    • Godbole, S.1    Sarawagi, S.2
  • 3
    • 33748366796 scopus 로고    scopus 로고
    • Multilabel neural networks with applications to functional genomics and text categorization
    • Zhang, M.L., Zhou, Z.H.: Multilabel neural networks with applications to functional genomics and text categorization. IEEE Trans. on Knowledge and Data Engineering 18(10), 1338-1351 (2006)
    • (2006) IEEE Trans. on Knowledge and Data Engineering , vol.18 , Issue.10 , pp. 1338-1351
    • Zhang, M.L.1    Zhou, Z.H.2
  • 6
    • 37349031558 scopus 로고    scopus 로고
    • Exploiting diversity in ensembles: Improving the performance on unbalanced datasets
    • Haindl, M., Kittler, J., Roli, F. (eds.) MCS 2007. Springer, Heidelberg
    • Chawla, N.V., Sylvester, J.C.: Exploiting diversity in ensembles: Improving the performance on unbalanced datasets. In: Haindl, M., Kittler, J., Roli, F. (eds.) MCS 2007. LNCS, vol. 4472, pp. 397-406. Springer, Heidelberg (2007)
    • (2007) LNCS , vol.4472 , pp. 397-406
    • Chawla, N.V.1    Sylvester, J.C.2
  • 7
    • 68949141664 scopus 로고    scopus 로고
    • Combining instance-based learning and logistic regression for multilabel classification
    • Cheng, W., Hullermeier, E.: Combining instance-based learning and logistic regression for multilabel classification. Machine Learning 76(2-3), 211-225 (2009)
    • (2009) Machine Learning , vol.76 , Issue.2-3 , pp. 211-225
    • Cheng, W.1    Hullermeier, E.2
  • 8
    • 70349968175 scopus 로고    scopus 로고
    • Classifier chains for multi-label classification
    • Buntine,W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009, Part II. Springer, Heidelberg
    • Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. In: Buntine,W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009, Part II. LNCS (LNAI), vol. 5782, pp. 254-269. Springer, Heidelberg (2009)
    • (2009) LNCS (LNAI) , vol.5782 , pp. 254-269
    • Read, J.1    Pfahringer, B.2    Holmes, G.3    Frank, E.4
  • 10
  • 11
    • 38049123909 scopus 로고    scopus 로고
    • Random k-labelsets: An ensemble method for multi-label classification
    • Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. Springer, Heidelberg
    • Tsoumakas, G., Vlahavas, I.: Random k-labelsets: An ensemble method for multi-label classification. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 406-417. Springer, Heidelberg (2007)
    • (2007) LNCS (LNAI) , vol.4701 , pp. 406-417
    • Tsoumakas, G.1    Vlahavas, I.2
  • 12
  • 13
    • 33947681316 scopus 로고    scopus 로고
    • ML-KNN: A lazy learning approach to multi-label learning
    • Zhang, M.L., Zhou, Z.H.: ML-KNN: A lazy learning approach to multi-label learning. Pattern Recognition 40(7), 2038-2048 (2007)
    • (2007) Pattern Recognition , vol.40 , Issue.7 , pp. 2038-2048
    • Zhang, M.L.1    Zhou, Z.H.2
  • 14
    • 76649137444 scopus 로고    scopus 로고
    • A kernel method for multi-labelled classification
    • Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. In: Advances in NIPS, vol. 14 (2002)
    • (2002) Advances in NIPS , vol.14
    • Elisseeff, A.1    Weston, J.2
  • 15
    • 77952032802 scopus 로고    scopus 로고
    • Multi-label classification using ensembles of pruned sets
    • Perner, P. (ed.) ICDM 2008. Springer, Heidelberg
    • Read, J., Pfahringer, B., Holmes, G.: Multi-label classification using ensembles of pruned sets. In: Perner, P. (ed.) ICDM 2008. LNCS (LNAI), vol. 5077. Springer, Heidelberg (2008)
    • (2008) LNCS (LNAI) , vol.5077
    • Read, J.1    Pfahringer, B.2    Holmes, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.