메뉴 건너뛰기




Volumn 41, Issue 5, 2011, Pages 977-988

Pattern- and network-based classification techniques for multichannel medical data signals to improve brain diagnosis

Author keywords

Electroencephalogram (EEG) classification; epilepsy diagnosis; multidimensional time series; optimization; pattern recognition

Indexed keywords

BRAIN DISORDERS; BRAIN FUNCTIONS; CLASS SEPARABILITY; CLASSIFICATION ACCURACY; CLASSIFICATION TECHNIQUE; DATA SETS; ELECTROENCEPHALOGRAM (EEG) CLASSIFICATION; EPILEPSY DIAGNOSIS; GOLD STANDARDS; MEDICAL DATA; MEMORY RESOURCES; MULTI-CHANNEL; MULTI-DIMENSIONAL TIME-SERIES DATA; MULTICHANNEL EEG; MULTIDIMENSIONAL TIME SERIES; NETWORK-BASED; OPTIMIZATION MODELS; SCREENING PROCESS; SIMILARITY MEASURE; TEMPORAL CHARACTERISTICS; TIME SERIES CLASSIFICATIONS; TRADITIONAL TECHNIQUES; TRAINING PHASE;

EID: 80052050014     PISSN: 10834427     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSMCA.2011.2106118     Document Type: Article
Times cited : (46)

References (55)
  • 1
    • 0029027648 scopus 로고
    • Epilepsy in a population of 6000 re-examined: Secular trends in first attendance rates, prevalence, and prognosis
    • May
    • O. Cockerell, I. Eckle, D. Goodridge, J. Sander, and S. Shorvon, Epilepsy in a population of 6000 re-examined: Secular trends in first attendance rates, prevalence, and prognosis, J. Neurol., Neurosurg., Psychiatry, vol. 58, no. 5, pp. 570-576, May 1995.
    • (1995) J. Neurol., Neurosurg., Psychiatry , vol.58 , Issue.5 , pp. 570-576
    • Cockerell, O.1    Eckle, I.2    Goodridge, D.3    Sander, J.4    Shorvon, S.5
  • 2
    • 77951000970 scopus 로고    scopus 로고
    • Online. Available
    • W. H. O. (WHO), Epilepsy: Historical Overview, 2004. [Online]. Available: http://www.who.int/mediacentre/factsheets/fs168/en/
    • (2004) Epilepsy: Historical Overview
  • 4
    • 33749507245 scopus 로고    scopus 로고
    • How confident are we of the diagnosis of epilepsy?
    • DOI 10.1111/j.1528-1167.2006.00653.x
    • C. A. van Donselaar, H. Stroink, and W.-F. Arts, How confident are we of the diagnosis of epilepsy? Epilepsia, vol 47, no. S1, pp. 9-13, Oct. 2006. (Pubitemid 44527128)
    • (2006) Epilepsia , vol.47 , Issue.SUPPL. 1 , pp. 9-13
    • Van Donselaar, C.A.1    Stroink, H.2    Arts, W.-F.3
  • 5
    • 0032343819 scopus 로고    scopus 로고
    • Discrimination and clustering for multivariate time series
    • Mar
    • Y. Kakizawa, R. Shumway, and M. Taniguchi, Discrimination and clustering for multivariate time series, J. Amer. Stat. Assoc., vol. 93, no. 441, pp. 328-340, Mar. 1998.
    • (1998) J. Amer. Stat. Assoc. , vol.93 , Issue.441 , pp. 328-340
    • Kakizawa, Y.1    Shumway, R.2    Taniguchi, M.3
  • 6
    • 1842766765 scopus 로고    scopus 로고
    • Nonlinear multivariate and time series analysis by neural network methods
    • W. Hsieh, Nonlinear multivariate and time series analysis by neural network methods, Rev. Geophys., vol. 42, p. RG1 003, 2004.
    • (2004) Rev. Geophys. , vol.42
    • Hsieh, W.1
  • 11
    • 33845312341 scopus 로고    scopus 로고
    • Electroencephalogram (EEG) time series classification: Applications in epilepsy
    • DOI 10.1007/s10479-006-0076-x, Operations Research in Medicine-Computing and Optimization in Medicine and Life Sciences
    • W. Chaovalitwongse, P. Pardalos, and O. Prokoyev, Electroencephalogram (EEG) time series classification: Applications in epilepsy, Ann. Oper. Res., vol. 148, no. 1, pp. 227-250, Nov. 2006. (Pubitemid 44878201)
    • (2006) Annals of Operations Research , vol.148 , Issue.1 , pp. 227-250
    • Chaovalitwongse, W.A.1    Prokopyev, O.A.2    Pardalos, P.M.3
  • 14
    • 61449214265 scopus 로고    scopus 로고
    • Novel optimization models for abnormal brain activity classification
    • Nov./Dec
    • W. Chaovalitwongse, Y. Fan, and R. Sachdeo, Novel optimization models for abnormal brain activity classification, Oper. Res., vol. 56, no. 6, pp. 1450-1460, Nov./Dec. 2008.
    • (2008) Oper. Res. , vol.56 , Issue.6 , pp. 1450-1460
    • Chaovalitwongse, W.1    Fan, Y.2    Sachdeo, R.3
  • 17
    • 35949021230 scopus 로고
    • Geometry from time series
    • Sep
    • N. Packard, J. Crutchfield, and J. Farmer, Geometry from time series, Phys. Rev. Lett., vol. 45, no. 9, pp. 712-716, Sep. 1980.
    • (1980) Phys. Rev. Lett. , vol.45 , Issue.9 , pp. 712-716
    • Packard, N.1    Crutchfield, J.2    Farmer, J.3
  • 18
    • 0003046317 scopus 로고
    • Experimental studies of chaotic neural behavior: Cellular activity and electroencephalographic signals
    • H. Othmer, Ed. Berlin, Germany: Springer-Verlag
    • P. Rapp, I. Zimmerman, and A. M. Albano, Experimental studies of chaotic neural behavior: Cellular activity and electroencephalographic signals, in Nonlinear Oscillations in Biology and Chemistry, H. Othmer, Ed. Berlin, Germany: Springer-Verlag, 1986, pp. 175-205.
    • (1986) Nonlinear Oscillations in Biology and Chemistry , pp. 175-205
    • Rapp, P.1    Zimmerman, I.2    Albano, A.M.3
  • 19
    • 0000779360 scopus 로고
    • Detecting strange attractors in turbulence
    • D. Rand and L. Young, Eds. Berlin, Germany: Springer-Verlag
    • F. Takens, Detecting strange attractors in turbulence, in Dynamical Systems and Turbulence, vol. 898, Lecture Notes in Mathematics, D. Rand and L. Young, Eds. Berlin, Germany: Springer-Verlag, 1981, pp. 366-381.
    • (1981) Dynamical Systems and Turbulence, Vol. 898, Lecture Notes in Mathematics , pp. 366-381
    • Takens, F.1
  • 21
    • 84856043672 scopus 로고
    • A mathematical theory of communication
    • Jul
    • C. Shannon, A mathematical theory of communication, Bell Syst. Tech. J., vol. 27, pp. 379-423, Jul. 1948.
    • (1948) Bell Syst. Tech. J. , vol.27 , pp. 379-423
    • Shannon, C.1
  • 22
    • 0036509729 scopus 로고    scopus 로고
    • Efficient C4.5
    • Mar./Apr
    • S. Ruggieri, Efficient C4.5, IEEE Trans. Knowl. Data Eng., vol. 14, no. 2, pp. 438-444, Mar./Apr. 2002.
    • (2002) IEEE Trans. Knowl. Data Eng. , vol.14 , Issue.2 , pp. 438-444
    • Ruggieri, S.1
  • 23
    • 33847242621 scopus 로고    scopus 로고
    • Parallel univariate decision trees
    • May
    • O. Yildiz and O. Dikmen, Parallel univariate decision trees, Pattern Recognit. Lett., vol. 28, no. 7, pp. 825-832, May 2007.
    • (2007) Pattern Recognit. Lett. , vol.28 , Issue.7 , pp. 825-832
    • Yildiz, O.1    Dikmen, O.2
  • 24
    • 77949748530 scopus 로고    scopus 로고
    • A decision tree algorithm for distributed data mining: Towards network intrusion detection
    • Computational Science and Its Applications - ICCSA 2004
    • S. Baik and J. Bala, A decision tree algorithm for distributed data mining: Towards network intrusion detection, in Proc. Int. Conf. Comput. Sci. Appl., 2004, vol. 3046, pp. 206-212. (Pubitemid 38761440)
    • (2004) Proc. Int. Conf. Comput. Sci. Appl. , Issue.3046 , pp. 206-212
    • Baik, S.1    Bala, J.2
  • 26
    • 0026860799 scopus 로고
    • Robust linear programming discrimination of two linearly inseparable sets
    • K. P. Bennett and O. L. Mangasarian, Robust linear programming discrimination of two linearly inseparable sets, Optim. Methods Softw., vol. 1, no. 1, pp. 23-34, 1992. (Pubitemid 23615796)
    • (1992) Optimization Methods and Software , vol.1 , Issue.1 , pp. 23-34
    • Bennett Kristin, P.1    Mangasarian, O.L.2
  • 27
    • 0004990788 scopus 로고    scopus 로고
    • Mathematical programming for data mining: Formulations and challenges
    • P. Bradley, U. Fayyad, and O. Mangasarian, Mathematical programming for data mining: Formulations and challenges, INFORMS J. Comput., vol. 11, no. 3, pp. 217-238, 1999.
    • (1999) INFORMS J. Comput. , vol.11 , Issue.3 , pp. 217-238
    • Bradley, P.1    Fayyad, U.2    Mangasarian, O.3
  • 28
    • 0000684645 scopus 로고
    • Breast cancer diagnosis and prognosis via linear programming
    • 577, Jul./Aug
    • O. Mangasarian, W. Street, and W. Wolberg, Breast cancer diagnosis and prognosis via linear programming, Oper. Res., vol. 43, no. 4, pp. 570-577, 577. Jul./Aug. 1995.
    • (1995) Oper. Res. , vol.43 , Issue.4 , pp. 570-577
    • Mangasarian, O.1    Street, W.2    Wolberg, W.3
  • 31
    • 84902205493 scopus 로고    scopus 로고
    • Comparison of view-based object recognition algorithms using realistic 3D models
    • Artificial Neural Networks - ICANN 96
    • V. Blanz, B. Scholkopf, H. Bulthoff, C. Burges, V. Vapnik, and T. Vetter, Comparison of view-based object recognition algorithms using realistic 3D models, in Proc. ICANN, vol. 1112. Berlin, Germany: Springer-Verlag, 1996, pp. 251-256. (Pubitemid 126098540)
    • (1996) Proc. ICANN , Issue.1112 , pp. 251-256
    • Blanz, V.1    Schoelkopf, B.2    Buelthoff, H.3    Burges, C.4    Vapnik, V.5    Vetter, T.6
  • 32
    • 1042289791 scopus 로고    scopus 로고
    • Identifying speaker with support vector networks
    • Sydney, Australia
    • M. Schmidt, Identifying speaker with support vector networks, in Proc. Interface, Sydney, Australia, 1996.
    • (1996) Proc. Interface
    • Schmidt, M.1
  • 34
    • 84957069814 scopus 로고    scopus 로고
    • Text categorization with support vector machines: Learning with many relevant features
    • Machine Learning: ECML-98
    • T. Joachims, Text categorization with support vector machines: Learning with many relevant features, in Proc. 10th Eur. Conf. Mach. Learn., Chemnitz, Germany, Apr. 1998, vol. 1398, pp. 137-142. (Pubitemid 128067178)
    • (1998) Proc. 10th Eur. Conf. Mach. Learn. , Issue.1398 , pp. 137-142
    • Joachims, T.1
  • 35
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • DOI 10.1109/72.991427, PII S1045922702018052
    • C.-W. Hsu and C.-J. Lin, A comparison of methods multi-class support vector machines, IEEE Trans. Neural Netw., vol. 13, no. 2, pp. 415-425, Mar. 2002. (Pubitemid 34475042)
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.2 , pp. 415-425
    • Hsu, C.-W.1    Lin, C.-J.2
  • 36
    • 0002229304 scopus 로고    scopus 로고
    • Pairwise classification and support vector machines
    • Cambridge, MA: MIT Press
    • U. Krebel, Pairwise classification and support vector machines, in Advances in Kernel Methods-Support Vector Learning. Cambridge, MA: MIT Press, 1999, pp. 255-268.
    • (1999) Advances in Kernel Methods-support Vector Learning , pp. 255-268
    • Krebel, U.1
  • 37
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C. Burges, Tutorial on support vector machines for pattern recognition, Data Mining Knowl. Discov., vol. 2, pp. 121-167, 1998. (Pubitemid 128695475)
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 38
    • 85006763464 scopus 로고    scopus 로고
    • Support vector machine with dynamic time-alignment kernel for speech recognition
    • H. Shimodaira, K. ichi Noma, M. Naka, and S. Sagayama, Support vector machine with dynamic time-alignment kernel for speech recognition, in Proc. Eurospeech, 2001, pp. 1841-1844.
    • (2001) Proc. Eurospeech , pp. 1841-1844
    • Shimodaira, H.1    Noma, K.I.2    Naka, M.3    Sagayama, S.4
  • 39
    • 33744949682 scopus 로고    scopus 로고
    • SVM kernels for time series analysis
    • R. Klinkenberg, S. Rüping, A. Fick, N. Henze, C. Herzog, R. Molitor, and O. Schröder, Eds
    • S. Rüping, SVM kernels for time series analysis, in Proc. LLWA-Tagungsband der GI-Workshop-Woche Lernen-Lehren-Wissen-Adaptivität, R. Klinkenberg, S. Rüping, A. Fick, N. Henze, C. Herzog, R. Molitor, and O. Schröder, Eds., 2001, pp. 43-50.
    • (2001) Proc. LLWA-tagungsband der GI-Workshop-Woche Lernen-Lehren-Wissen- Adaptivität , pp. 43-50
    • Rüping, S.1
  • 40
    • 33745208212 scopus 로고    scopus 로고
    • Polynomial dynamic time warping kernel support vector machines for dysarthric speech recognition with sparse training data
    • V. Wan and J. Carmichael, Polynomial dynamic time warping kernel support vector machines for dysarthric speech recognition with sparse training data, in Proc. Interspeech, 2005, pp. 3321-3324.
    • (2005) Proc. Interspeech , pp. 3321-3324
    • Wan, V.1    Carmichael, J.2
  • 41
    • 36249003318 scopus 로고    scopus 로고
    • Class prediction from time series gene expression profiles using dynamical systems kernels
    • K. M. Borgwardt, S. Vishwanathan, and H.-P. Kriegel, Class prediction from time series gene expression profiles using dynamical systems kernels, in Proc. Pacific Symp. Biocomputing, 2006, pp. 547-558.
    • (2006) Proc. Pacific Symp. Biocomputing , pp. 547-558
    • Borgwardt, K.M.1    Vishwanathan, S.2    Kriegel, H.-P.3
  • 44
    • 85150810448 scopus 로고    scopus 로고
    • An enhanced representation of time series which allows fast and accurate classification, clustering and relevance feedback
    • E. Keogh and M. Pazzani, An enhanced representation of time series which allows fast and accurate classification, clustering and relevance feedback, in Proc. 4th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 1998, pp. 239-241.
    • (1998) Proc. 4th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining , pp. 239-241
    • Keogh, E.1    Pazzani, M.2
  • 46
    • 0036993130 scopus 로고    scopus 로고
    • Genetic algorithms and support vector machines for time series classification
    • D. Eads, D. Hill, S. Davis, S. Perkins, J. Ma, R. Porter, and J. Theiler, Genetic algorithms and support vector machines for time series classification, Proc. SPIE, vol. 4787, pp. 74-85, 2002.
    • (2002) Proc. SPIE , vol.4787 , pp. 74-85
    • Eads, D.1    Hill, D.2    Davis, S.3    Perkins, S.4    Ma, J.5    Porter, R.6    Theiler, J.7
  • 47
    • 2442476951 scopus 로고    scopus 로고
    • Contributions to decision tree induction: Bias/variance tradeoff and time series classification
    • P. Geurts, Contributions to decision tree induction: Bias/variance tradeoff and time series classification, Ph. D. dissertation, Univ. Liege, Liege, Belgium, 2002.
    • (2002) Ph. D. Dissertation, Univ. Liege, Liege, Belgium
    • Geurts, P.1
  • 48
    • 0242709395 scopus 로고    scopus 로고
    • On the need for time series data mining benchmarks: A survey and empirical demonstration
    • E. Keogh and S. Kasetty, On the need for time series data mining benchmarks: A survey and empirical demonstration, in Proc. 8th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2002, pp. 102-111.
    • (2002) Proc. 8th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining , pp. 102-111
    • Keogh, E.1    Kasetty, S.2
  • 52
    • 78349310408 scopus 로고    scopus 로고
    • Online support vector regression with varying parameters for time-dependent data
    • Jan
    • O. Omitaomu, M. Jeong, and A. Badiru, Online support vector regression with varying parameters for time-dependent data, IEEE Trans. Syst., Man, Cybern. A, Syst., Humans, vol. 41, no. 1, pp. 191-197, Jan. 2011.
    • (2011) IEEE Trans. Syst., Man, Cybern. A, Syst., Humans , vol.41 , Issue.1 , pp. 191-197
    • Omitaomu, O.1    Jeong, M.2    Badiru, A.3
  • 54
    • 84950461478 scopus 로고
    • Estimating the error rate of a prediction rule: Improvement on cross-validation
    • Jun
    • B. Efron, Estimating the error rate of a prediction rule: Improvement on cross-validation, J. Amer. Stat. Assoc., vol. 78, no. 382, pp. 316-331, Jun. 1983.
    • (1983) J. Amer. Stat. Assoc. , vol.78 , Issue.382 , pp. 316-331
    • Efron, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.