메뉴 건너뛰기




Volumn 56, Issue 6, 2008, Pages 1450-1460

Novel optimization models for abnormal brain activity classification

Author keywords

Classification; Medical diagnosis; Multidimensional time series; Nearest neighbor; Optimization

Indexed keywords

BRAIN ACTIVITIES; CLASSIFICATION; CLASSIFICATION ACCURACIES; CLASSIFICATION RULES; CLASSIFICATION TECHNIQUES; DATA SETS; DYNAMICAL PROPERTIES; EMPIRICAL STUDIES; K-NEAREST NEIGHBORS; MEDICAL DIAGNOSIS; MULTI-DIMENSIONAL TIME-SERIES DATUM; MULTIDIMENSIONAL TIME SERIES; NEAREST NEIGHBOR; OPTIMIZATION MODELS; SUPPORT VECTORS;

EID: 61449214265     PISSN: 0030364X     EISSN: 15265463     Source Type: Journal    
DOI: 10.1287/opre.1080.0573     Document Type: Article
Times cited : (23)

References (25)
  • 1
    • 0004990788 scopus 로고    scopus 로고
    • Mathematical programming for data mining: Formulations and challenges
    • Bradley, P. S., U. Fayyad, O. L. Mangasarian. 1999. Mathematical programming for data mining: Formulations and challenges. INFORMS J. Comput. 11 217-238.
    • (1999) INFORMS J. Comput , vol.11 , pp. 217-238
    • Bradley, P.S.1    Fayyad, U.2    Mangasarian, O.L.3
  • 3
    • 33845312341 scopus 로고    scopus 로고
    • Electroencephalogram (EEG) time series classification: Applications in epilepsy
    • Chaovalitwongse, W. A., P. M. Pardalos, O. A. Prokoyev. 2006. Electroencephalogram (EEG) time series classification: Applications in epilepsy. Ann. Oper. Res. 148 227-250.
    • (2006) Ann. Oper. Res , vol.148 , pp. 227-250
    • Chaovalitwongse, W.A.1    Pardalos, P.M.2    Prokoyev, O.A.3
  • 6
    • 3142615000 scopus 로고    scopus 로고
    • A feature selection Newton method for support vector machine classification
    • Technical Report 02-03, Data Mining Institute, Computer Sciences Department, University of Wisconsin, Madison
    • Fung, G., O. L. Mangasarian. 2002. A feature selection Newton method for support vector machine classification. Technical Report 02-03, Data Mining Institute, Computer Sciences Department, University of Wisconsin, Madison.
    • (2002)
    • Fung, G.1    Mangasarian, O.L.2
  • 7
    • 1842766765 scopus 로고    scopus 로고
    • Nonlinear multivariate and time series analysis by neural network methods
    • Hsieh, W. W. 2004. Nonlinear multivariate and time series analysis by neural network methods. Rev. Geophysics 42 RG1003.
    • (2004) Rev. Geophysics , vol.42
    • Hsieh, W.W.1
  • 8
    • 61449149883 scopus 로고    scopus 로고
    • Iasemidis, L. D. 1991. On the dynamics of the human brain in temporal lobe epilepsy. Ph.D. thesis, University of Michigan, Ann Arbor.
    • Iasemidis, L. D. 1991. On the dynamics of the human brain in temporal lobe epilepsy. Ph.D. thesis, University of Michigan, Ann Arbor.
  • 9
    • 0037562843 scopus 로고    scopus 로고
    • Epileptic seizure prediction and control
    • Iasemidis, L. D. 2003. Epileptic seizure prediction and control. IEEE Trans. Biomedical Engrg. 5(5) 549-558.
    • (2003) IEEE Trans. Biomedical Engrg , vol.5 , Issue.5 , pp. 549-558
    • Iasemidis, L.D.1
  • 12
    • 0042711018 scopus 로고    scopus 로고
    • On the need for time series data mining benchmarks: A survey and empirical demonstration
    • Keogh. E., S. Kasetty. 2003. On the need for time series data mining benchmarks: A survey and empirical demonstration. Data Mining and Knowledge Discovery 7 349-371.
    • (2003) Data Mining and Knowledge Discovery , vol.7 , pp. 349-371
    • Keogh, E.1    Kasetty, S.2
  • 13
    • 85150810448 scopus 로고    scopus 로고
    • An enhanced representation of time series which allows fast and accurate classification, clustering and relevance feedback
    • New York
    • Keogh, E., M. Pazzani. 1998. An enhanced representation of time series which allows fast and accurate classification, clustering and relevance feedback. Proc. 4th Internat. Conf Knowledge Discovery and Data Mining, New York, 239-241.
    • (1998) Proc. 4th Internat. Conf Knowledge Discovery and Data Mining , pp. 239-241
    • Keogh, E.1    Pazzani, M.2
  • 14
    • 61449154841 scopus 로고    scopus 로고
    • Keogh, E., K. Chakrabarti, M. Pazzani, S. Mehrotra. 2000. Dimensionality reduction for fast similarity search in large time series databases. Knowledge Inform. Systems 3(3) 263-286.
    • Keogh, E., K. Chakrabarti, M. Pazzani, S. Mehrotra. 2000. Dimensionality reduction for fast similarity search in large time series databases. Knowledge Inform. Systems 3(3) 263-286.
  • 15
    • 0000684645 scopus 로고
    • Breast cancel-diagnosis and prognosis via linear programming
    • 570-577
    • Mangasarian, O. L., W N. Street, W. H. Wolberg. 1995. Breast cancel-diagnosis and prognosis via linear programming. Oper. Res. 43(4) 570-577.
    • (1995) Oper. Res , vol.43 , Issue.4
    • Mangasarian, O.L.1    Street, W.N.2    Wolberg, W.H.3
  • 19
    • 0033551578 scopus 로고    scopus 로고
    • Anticipating epileptic seizures in real time by non-linear analysis of similarity between EEG recordings
    • Quyen, M. L. V., J. Martinerie, M. Baulac, F. Varela. 1999. Anticipating epileptic seizures in real time by non-linear analysis of similarity between EEG recordings. NeuroReport 10 2149-2155.
    • (1999) NeuroReport , vol.10 , pp. 2149-2155
    • Quyen, M.L.V.1    Martinerie, J.2    Baulac, M.3    Varela, F.4
  • 23
    • 33749260341 scopus 로고    scopus 로고
    • Xi, X., E. Keogh, C. Shelton, L. Wei, C. Ann Ratanamahatana. 2006. Fast time series classification using numerosity reduction. Proc. 23rd Internat. Conf. Machine Learning, Pittsburgh. ACM International Conference Proceeding Series, 148, 1033-1040.
    • Xi, X., E. Keogh, C. Shelton, L. Wei, C. Ann Ratanamahatana. 2006. Fast time series classification using numerosity reduction. Proc. 23rd Internat. Conf. Machine Learning, Pittsburgh. ACM International Conference Proceeding Series, Vol. 148, 1033-1040.
  • 24
    • 61449187764 scopus 로고    scopus 로고
    • Yang, K., H. Yoon, C. Shahabi. 2005. A supervised feature subset selection technique for multivariate time series. Internat. Workshop on Feature. Selection for Data Mining: Interfacing Machine Learning with Statist. (FSDM) in Conjunction with 2005 SIAM Internat. Conf. on Data Mining (SDM'05), Newport Beach, CA.
    • Yang, K., H. Yoon, C. Shahabi. 2005. A supervised feature subset selection technique for multivariate time series. Internat. Workshop on Feature. Selection for Data Mining: Interfacing Machine Learning with Statist. (FSDM) in Conjunction with 2005 SIAM Internat. Conf. on Data Mining (SDM'05), Newport Beach, CA.
  • 25
    • 0032343819 scopus 로고    scopus 로고
    • Discrimination and clustering for multivariate time series
    • Yoshihide, K., M. Taniguchi, R. H. Shumway. 1998. Discrimination and clustering for multivariate time series. J. Amer. Statist. Assoc. 93(441) 328-340.
    • (1998) J. Amer. Statist. Assoc , vol.93 , Issue.441 , pp. 328-340
    • Yoshihide, K.1    Taniguchi, M.2    Shumway, R.H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.