메뉴 건너뛰기




Volumn 38, Issue 12, 2011, Pages 15202-15207

Effect of SVM kernel functions on classification of vibration signals of a single point cutting tool

Author keywords

Decision Tree; Feature extraction; Statistical features; Support Vector Machine; Tool condition monitoring

Indexed keywords

BAYES NET; CLASSIFICATION EFFICIENCY; KERNEL FUNCTION; SENSOR SYSTEMS; SINGLE POINT; STATISTICAL FEATURES; STRUCTURAL HEALTH; SUPPORT VECTOR; TOOL CONDITION; TOOL CONDITION MONITORING; VIBRATION SIGNAL; WEAR PARAMETERS; WORK PIECES;

EID: 80052030181     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2011.05.081     Document Type: Article
Times cited : (80)

References (19)
  • 1
    • 38149114090 scopus 로고    scopus 로고
    • Analysis of the structure of vibration signals for tool wear detection
    • F.J. Alonso, and D.R. Salgado Analysis of the structure of vibration signals for tool wear detection Mechanical Systems and Signal Processing 22 2008 735 748
    • (2008) Mechanical Systems and Signal Processing , vol.22 , pp. 735-748
    • Alonso, F.J.1    Salgado, D.R.2
  • 2
    • 67349144405 scopus 로고    scopus 로고
    • Machine ensemble approach for simultaneous detection of transient and gradual abnormalities in end milling using multisensor fusion
    • S. Binsaeid, S. Asfour, S. Cho, and A. Onar Machine ensemble approach for simultaneous detection of transient and gradual abnormalities in end milling using multisensor fusion Journal of Materials Processing Technology 209 2009 4728 4738
    • (2009) Journal of Materials Processing Technology , vol.209 , pp. 4728-4738
    • Binsaeid, S.1    Asfour, S.2    Cho, S.3    Onar, A.4
  • 4
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes, and V. Vapnik Support-vector networks Machine Learning 20 1995 273 297
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 5
    • 70449530626 scopus 로고    scopus 로고
    • Studies on Bayes classifier for condition monitoring of single point carbide tipped tool based on statistical and histogram features
    • M. Elangovan, K.I. Ramachandran, and V. Sugumaran Studies on Bayes classifier for condition monitoring of single point carbide tipped tool based on statistical and histogram features Expert Systems with Applications 37 2010 2059 2065
    • (2010) Expert Systems with Applications , vol.37 , pp. 2059-2065
    • Elangovan, M.1    Ramachandran, K.I.2    Sugumaran, V.3
  • 7
    • 80052026557 scopus 로고
    • United States patent 5024563, Available from
    • Randall, J. G. (1991). United States patent 5024563, cutting apparatus. Available from http://www.patentstorm.us/patents/5024563-description.html.
    • (1991) Cutting Apparatus
    • Randall, J.G.1
  • 8
    • 0022769345 scopus 로고
    • Tool wear monitoring through the dynamics of stable turning
    • S.B. Rao Tool wear monitoring through the dynamics of stable turning Journal of Engineering for Industry 108 1986 183 190
    • (1986) Journal of Engineering for Industry , vol.108 , pp. 183-190
    • Rao, S.B.1
  • 9
    • 44949231244 scopus 로고    scopus 로고
    • A comparative study on classification of features by SVM and PSVM extracted using Morlet wavelet for fault diagnosis of spur bevel gear box
    • N. Saravanan, V.N.S. Kumar Siddabattuni, and K.I. Ramachandran A comparative study on classification of features by SVM and PSVM extracted using Morlet wavelet for fault diagnosis of spur bevel gear box Expert Systems with Applications 35 2008 1351 1366
    • (2008) Expert Systems with Applications , vol.35 , pp. 1351-1366
    • Saravanan, N.1    Kumar Siddabattuni, V.N.S.2    Ramachandran, K.I.3
  • 11
    • 33846844788 scopus 로고    scopus 로고
    • Tool wear predictive model based on least squares support vector machines
    • D. Shi, and N.N. Gindy Tool wear predictive model based on least squares support vector machines Mechanical Systems and Signal Processing 21 2007 1799 1814
    • (2007) Mechanical Systems and Signal Processing , vol.21 , pp. 1799-1814
    • Shi, D.1    Gindy, N.N.2
  • 12
    • 0036664145 scopus 로고    scopus 로고
    • On-line and indirect tool wear monitoring in turning with artificial neural networks: A review of more than a decade of research
    • B. Sick On-line and indirect tool wear monitoring in turning with artificial neural networks: A review of more than a decade of research Mechanical Systems and Signal Processing 16 2002 487 546
    • (2002) Mechanical Systems and Signal Processing , vol.16 , pp. 487-546
    • Sick, B.1
  • 13
    • 33750591809 scopus 로고    scopus 로고
    • Feature selection using Decision Tree and classification through Proximal Support Vector Machine for fault diagnostics of roller bearing
    • V. Sugumaran, V. Muralidharan, and K.I. Ramachandran Feature selection using Decision Tree and classification through Proximal Support Vector Machine for fault diagnostics of roller bearing Mechanical Systems and Signal Processing 21 2007 930 942
    • (2007) Mechanical Systems and Signal Processing , vol.21 , pp. 930-942
    • Sugumaran, V.1    Muralidharan, V.2    Ramachandran, K.I.3
  • 14
    • 38649135047 scopus 로고    scopus 로고
    • Fault diagnostics of roller bearing using kernel based neighborhood score multi-class support vector machine
    • V. Sugumaran, G.R. Sabareesh, and K.I. Ramachandran Fault diagnostics of roller bearing using kernel based neighborhood score multi-class support vector machine Expert Systems with Applications 34 2008 3090 3098
    • (2008) Expert Systems with Applications , vol.34 , pp. 3090-3098
    • Sugumaran, V.1    Sabareesh, G.R.2    Ramachandran, K.I.3
  • 15
    • 4544376192 scopus 로고    scopus 로고
    • The application of nonstandard support vector machine in tool condition monitoring system
    • Dept. of Mech. Eng., Nat. Univ. of Singapore, IEEE, Singapore
    • Sun, J., Hong, G.S., Rahman, M., & Wong, Y.S. (2004). The application of nonstandard support vector machine in tool condition monitoring system. In: Second IEEE international workshop on electronic design, delta (pp. 295-300). Dept. of Mech. Eng., Nat. Univ. of Singapore, IEEE, Singapore.
    • (2004) Second IEEE International Workshop on Electronic Design, Delta , pp. 295-300
    • Sun, J.1    Hong, G.S.2    Rahman, M.3    Wong, Y.S.4
  • 19
    • 34249661124 scopus 로고    scopus 로고
    • Support vector machine in machine condition monitoring and fault diagnosis
    • A. Widodo, and B.-S. Yang Support vector machine in machine condition monitoring and fault diagnosis Mechanical Systems and Signal Processing 21 2007 2560 2574
    • (2007) Mechanical Systems and Signal Processing , vol.21 , pp. 2560-2574
    • Widodo, A.1    Yang, B.-S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.