메뉴 건너뛰기




Volumn 15, Issue 9, 2011, Pages 1735-1747

The use of coevolution and the artificial immune system for ensemble learning

Author keywords

Artificial immune system; Coevolution; Differential evolution; Ensemble; Neural networks; Size

Indexed keywords

ARTIFICIAL IMMUNE SYSTEM; CO-EVOLUTION; DIFFERENTIAL EVOLUTION; ENSEMBLE; SIZE;

EID: 80051670016     PISSN: 14327643     EISSN: 14337479     Source Type: Journal    
DOI: 10.1007/s00500-010-0613-z     Document Type: Article
Times cited : (11)

References (51)
  • 1
    • 0036275180 scopus 로고    scopus 로고
    • An evolutionary artificial neural networks approach for breast cancer diagnosis
    • Abbass HA (2002) An evolutionary artificial neural networks approach for breast cancer diagnosis. Artif Intell Med 25(3): 265-281.
    • (2002) Artif Intell Med , vol.25 , Issue.3 , pp. 265-281
    • Abbass, H.A.1
  • 2
    • 84901459245 scopus 로고    scopus 로고
    • Pareto neuro-evolution: constructing ensemble of neural networks using multi-objective optimization
    • Abbass HA (2003a) Pareto neuro-evolution: constructing ensemble of neural networks using multi-objective optimization. Proc IEEE Congr Evol Comput 3: 2074-2080.
    • (2003) Proc IEEE Congr Evol Comput , vol.3 , pp. 2074-2080
    • Abbass, H.A.1
  • 3
    • 0141542628 scopus 로고    scopus 로고
    • Speeding up backpropagation using multiobjective evolutionary algorithms
    • Abbass HA (2003b) Speeding up backpropagation using multiobjective evolutionary algorithms. Neural Comput 15(11): 2705-2726.
    • (2003) Neural Comput , vol.15 , Issue.11 , pp. 2705-2726
    • Abbass, H.A.1
  • 5
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L (1996) Bagging predictors. Mach Learn 24(2): 123-140.
    • (1996) Mach Learn , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 6
    • 10444221886 scopus 로고    scopus 로고
    • Diversity creation methods: a survey and categorisation
    • Brown G, Wyatt J, Harris R, Yao X (2005) Diversity creation methods: a survey and categorisation. J Inf Fusion 6(1): 5-20.
    • (2005) J Inf Fusion , vol.6 , Issue.1 , pp. 5-20
    • Brown, G.1    Wyatt, J.2    Harris, R.3    Yao, X.4
  • 7
    • 25444484657 scopus 로고    scopus 로고
    • Managing diversity in regression ensembles
    • Brown G, Wyatt J, Tino P (2005) Managing diversity in regression ensembles. J Mach Learn Res 6: 1621-1650.
    • (2005) J Mach Learn Res , vol.6 , pp. 1621-1650
    • Brown, G.1    Wyatt, J.2    Tino, P.3
  • 10
    • 32544431928 scopus 로고    scopus 로고
    • Evolving hybrid ensembles of learning machines for better generalisation
    • Chandra A, Yao X (2006) Evolving hybrid ensembles of learning machines for better generalisation. Neurocomputing 69(7-9): 686-700.
    • (2006) Neurocomputing , vol.69 , Issue.7-9 , pp. 686-700
    • Chandra, A.1    Yao, X.2
  • 11
    • 0037379787 scopus 로고    scopus 로고
    • Training neural networks with a multi-objective sliding mode control algorithm
    • Costa MA, Braga AP, Menezes BR (2003) Training neural networks with a multi-objective sliding mode control algorithm. Neurocomputing 51: 467-473.
    • (2003) Neurocomputing , vol.51 , pp. 467-473
    • Costa, M.A.1    Braga, A.P.2    Menezes, B.R.3
  • 14
    • 0036613006 scopus 로고    scopus 로고
    • Learning and optimization using the clonal selection principle
    • de Castro LN, Zuben FJV (2002) Learning and optimization using the clonal selection principle. IEEE Trans Evol Comput 6(3): 239-251.
    • (2002) IEEE Trans Evol Comput , vol.6 , Issue.3 , pp. 239-251
    • de Castro, L.N.1    Zuben, F.J.V.2
  • 17
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • Friedman JH (1991) Multivariate adaptive regression splines. Ann Stat 19: 1-67.
    • (1991) Ann Stat , vol.19 , pp. 1-67
    • Friedman, J.H.1
  • 18
    • 0037186544 scopus 로고    scopus 로고
    • Stochastic gradient boosting
    • Friedman JH (2002) Stochastic gradient boosting. Comput Stat Data Anal 38(4): 367-378.
    • (2002) Comput Stat Data Anal , vol.38 , Issue.4 , pp. 367-378
    • Friedman, J.H.1
  • 19
    • 33847409306 scopus 로고    scopus 로고
    • Immune network based ensembles
    • García-Pedrajas N, Fyfe C (2007) Immune network based ensembles. Neurocomputing 70(7-9): 1155-1166.
    • (2007) Neurocomputing , vol.70 , Issue.7-9 , pp. 1155-1166
    • García-Pedrajas, N.1    Fyfe, C.2
  • 20
    • 42149173854 scopus 로고    scopus 로고
    • Construction of classifier ensembles by means of artificial immune systems
    • García-Pedrajas N, Fyfe C (2008) Construction of classifier ensembles by means of artificial immune systems. J Heuristics 14(3): 285-310.
    • (2008) J Heuristics , vol.14 , Issue.3 , pp. 285-310
    • García-Pedrajas, N.1    Fyfe, C.2
  • 21
    • 33749251505 scopus 로고    scopus 로고
    • A cooperative constructive method for neural networks for pattern recognition
    • García-Pedrajas N, Ortiz-Boyer D (2007) A cooperative constructive method for neural networks for pattern recognition. Pattern Recognit 40(1): 80-98.
    • (2007) Pattern Recognit , vol.40 , Issue.1 , pp. 80-98
    • García-Pedrajas, N.1    Ortiz-Boyer, D.2
  • 22
    • 21044454599 scopus 로고    scopus 로고
    • Cooperative coevolution of artificial neural network ensembles for pattern classification
    • García-Pedrajas N, Hervßs-Martfnez C, Ortiz-Boyer D (2005) Cooperative coevolution of artificial neural network ensembles for pattern classification. IEEE Trans Evol Comput 9(3): 271-302.
    • (2005) IEEE Trans Evol Comput , vol.9 , Issue.3 , pp. 271-302
    • García-Pedrajas, N.1    Hervßs-Martfnez, C.2    Ortiz-Boyer, D.3
  • 23
    • 0001942829 scopus 로고
    • Neural networks and the bias/variance dilemma
    • Geman S, Bienenstock E, Doursat R (1992) Neural networks and the bias/variance dilemma. Neural Comput 4(1): 1-58.
    • (1992) Neural Comput , vol.4 , Issue.1 , pp. 1-58
    • Geman, S.1    Bienenstock, E.2    Doursat, R.3
  • 25
    • 0042525838 scopus 로고    scopus 로고
    • A constructive algorithm for training cooperative neural network ensembles
    • Islam M, Yao X, Murase K (2003) A constructive algorithm for training cooperative neural network ensembles. IEEE Trans Neural Netw 14(4): 820-834.
    • (2003) IEEE Trans Neural Netw , vol.14 , Issue.4 , pp. 820-834
    • Islam, M.1    Yao, X.2    Murase, K.3
  • 26
    • 4344623228 scopus 로고    scopus 로고
    • Neural network regularization and ensembling using multi-objective evolutionary algorithms
    • Jin Y, Okabe T, Sendhoff B (2004) Neural network regularization and ensembling using multi-objective evolutionary algorithms. Proc IEEE Congr Evol Comput 1: 1-8.
    • (2004) Congr Evol Comput , vol.1 , pp. 1-8
    • Jin, Y.1    Okabe, T.2    Sendhoff, B.3
  • 27
    • 85054435084 scopus 로고
    • Neural network ensembles, cross validation, and active learning
    • G. Tesauro, D. S. Touretzky, and T. K. Leen (Eds.), Cambridge: The MIT Press
    • Krogh A, Vedelsby J (1995) Neural network ensembles, cross validation, and active learning. In: Tesauro G, Touretzky DS, Leen TK (eds) Advances in neural information processing systems, vol 7. The MIT Press, Cambridge, pp 231-238.
    • (1995) Advances in Neural Information Processing Systems , vol.7 , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 28
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • Kuncheva LI, Whitaker CJ (2003) Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mach Learn 51(2): 181-207.
    • (2003) Mach Learn , vol.51 , Issue.2 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 29
    • 0033485370 scopus 로고    scopus 로고
    • Ensemble learning via negative correlation
    • Liu Y, Yao X (1999) Ensemble learning via negative correlation. Neural Netw 12(10): 1399-1404.
    • (1999) Neural Netw , vol.12 , Issue.10 , pp. 1399-1404
    • Liu, Y.1    Yao, X.2
  • 30
    • 0034315099 scopus 로고    scopus 로고
    • Evolutionary ensembles with negative correlation learning
    • Liu Y, Yao X, Higuchi T (2000) Evolutionary ensembles with negative correlation learning. IEEE Trans Evol Comput 4(4): 380-387.
    • (2000) IEEE Trans Evol Comput , vol.4 , Issue.4 , pp. 380-387
    • Liu, Y.1    Yao, X.2    Higuchi, T.3
  • 31
    • 1542263755 scopus 로고    scopus 로고
    • Anti-correlation: a diversity promotion mechanisms in ensemble learning
    • McKay R, Abbass HA (2001) Anti-correlation: a diversity promotion mechanisms in ensemble learning. Aust J Intell Inf Process Syst 7(3): 139-149.
    • (2001) Aust J Intell Inf Process Syst , vol.7 , Issue.3 , pp. 139-149
    • McKay, R.1    Abbass, H.A.2
  • 33
    • 24944453466 scopus 로고    scopus 로고
    • Stopping criteria for ensemble of evolutionary artificial neural networks
    • Nguyen MH, Abbass HA, McKay RI (2005) Stopping criteria for ensemble of evolutionary artificial neural networks. Appl Soft Comput 6: 100-107.
    • (2005) Appl Soft Comput , vol.6 , pp. 100-107
    • Nguyen, M.H.1    Abbass, H.A.2    McKay, R.I.3
  • 34
    • 33750996171 scopus 로고    scopus 로고
    • A novel mixture of experts model based on cooperative coevolution
    • Nguyen MH, Abbass HA, Mckay RI (2006) A novel mixture of experts model based on cooperative coevolution. Neurocomputing 70: 155-163.
    • (2006) Neurocomputing , vol.70 , pp. 155-163
    • Nguyen, M.H.1    Abbass, H.A.2    McKay, R.I.3
  • 35
    • 0000551189 scopus 로고    scopus 로고
    • Popular ensemble methods: an empirical study
    • Opitz D, Maclin R (1999) Popular ensemble methods: an empirical study. J Artif Intell Res 11: 169-198.
    • (1999) J Artif Intell Res , vol.11 , pp. 169-198
    • Opitz, D.1    Maclin, R.2
  • 36
    • 33750253706 scopus 로고    scopus 로고
    • Biasing coevolutionary search for optimal multiagent behaviors
    • Panait L, Luke S, Wiegand RP (2006) Biasing coevolutionary search for optimal multiagent behaviors. IEEE Trans Evol Comput 10(6): 629-645.
    • (2006) IEEE Trans Evol Comput , vol.10 , Issue.6 , pp. 629-645
    • Panait, L.1    Luke, S.2    Wiegand, R.P.3
  • 37
    • 0000926506 scopus 로고
    • When networks disagree: ensemble methods for hybrid neural network
    • R. J. Mammone (Ed.), London: Chapman & Hall
    • Perrone MP, Cooper LN (1993) When networks disagree: ensemble methods for hybrid neural network. In: Mammone RJ (ed) Neural networks for speech and image processing. Chapman & Hall, London, pp 126-142.
    • (1993) Neural Networks for Speech and Image Processing , pp. 126-142
    • Perrone, M.P.1    Cooper, L.N.2
  • 39
    • 0034153728 scopus 로고    scopus 로고
    • Cooperative coevolution: an architecture for evolving coadapted subcomponents
    • Potter MA, Jong KAD (2000) Cooperative coevolution: an architecture for evolving coadapted subcomponents. Evol Comput 8(1): 1-29.
    • (2000) Evol Comput , vol.8 , Issue.1 , pp. 1-29
    • Potter, M.A.1    Jong, K.A.D.2
  • 41
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Schapire RE (1990) The strength of weak learnability. Mach Learn 5(2): 197-227.
    • (1990) Mach Learn , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.E.1
  • 42
    • 85127438349 scopus 로고    scopus 로고
    • Learning with ensembles: how overfitting can be useful
    • D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo (Eds.), Cambridge: The MIT Press
    • Sollich P, Krogh A (1996) Learning with ensembles: how overfitting can be useful. In: Touretzky DS, Mozer MC, Hasselmo ME (eds) Advances in neural information processing systems, vol 8. The MIT Press, Cambridge, pp 190-196.
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 190-196
    • Sollich, P.1    Krogh, A.2
  • 43
    • 0142000477 scopus 로고    scopus 로고
    • Differential evolution-a simple and efficient heuristic for global optimization
    • Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization. J Glob Optim 11: 341-359.
    • (1997) J Glob Optim , vol.11 , pp. 341-359
    • Storn, R.1    Price, K.2
  • 47
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert DH (1992) Stacked generalization. Neural Netw 5(2): 241-259.
    • (1992) Neural Netw , vol.5 , Issue.2 , pp. 241-259
    • Wolpert, D.H.1
  • 48
    • 0033362601 scopus 로고    scopus 로고
    • Evolving artificial neural networks
    • Yao X (1999) Evolving artificial neural networks. Proc IEEE 87(9): 1423-1447.
    • (1999) Proc IEEE , vol.87 , Issue.9 , pp. 1423-1447
    • Yao, X.1
  • 49
    • 85008014942 scopus 로고    scopus 로고
    • Evolving artificial neural network ensembles
    • Yao X, Islam MM (2008) Evolving artificial neural network ensembles. IEEE Comput Intell Mag 3(1): 31-42.
    • (2008) IEEE Comput Intell Mag , vol.3 , Issue.1 , pp. 31-42
    • Yao, X.1    Islam, M.M.2
  • 50
    • 24644517147 scopus 로고    scopus 로고
    • Selective SVMs ensemble driven by immune clonal algorithm
    • Zhang X, Wang S, Shan T, Jiao L (2005) Selective SVMs ensemble driven by immune clonal algorithm. Lect Notes Comput Sci 3449: 325-333.
    • (2005) Lect Notes Comput Sci , vol.3449 , pp. 325-333
    • Zhang, X.1    Wang, S.2    Shan, T.3    Jiao, L.4
  • 51
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: many could be better than all
    • Zhou ZH, Wu J, Tang W (2002) Ensembling neural networks: many could be better than all. Artif Intell 137(1-2): 239-263.
    • (2002) Artif Intell , vol.137 , Issue.1-2 , pp. 239-263
    • Zhou, Z.H.1    Wu, J.2    Tang, W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.