메뉴 건너뛰기




Volumn 20, Issue 6, 2011, Pages 787-801

Modeling and forecasting cumulative average temperature and heating degree day indices for weather derivative pricing

Author keywords

Forecasting; Pricing; Wavelet networks; Weather derivatives

Indexed keywords

AVERAGE TEMPERATURE; CHICAGO; DAILY TEMPERATURES; MEAN REVERSION; MODELING AND FORECASTING; ORNSTEIN-UHLENBECK; PRICING METHODS; SEASONALITY; TIME VARYING; WAVELET NETWORK; WAVELET NEURAL NETWORKS; WEATHER DERIVATIVES;

EID: 80051669932     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-010-0494-1     Document Type: Article
Times cited : (18)

References (68)
  • 1
    • 58149210009 scopus 로고
    • Predicting chaotic time series with wavelet networks
    • Cao L, Hong Y, Fang H, He G (1995) Predicting chaotic time series with wavelet networks. Phys D 85: 225-238.
    • (1995) Phys D , vol.85 , pp. 225-238
    • Cao, L.1    Hong, Y.2    Fang, H.3    He, G.4
  • 2
    • 33745912981 scopus 로고    scopus 로고
    • Wavelets based neural network for function approximation
    • Fang Y, Chow TWS (2006) Wavelets based neural network for function approximation. Lecture notes in computer science, vol 3971, pp 80-85.
    • (2006) Lecture notes in computer science , vol.3971 , pp. 80-85
    • Fang, Y.1    Chow, T.W.S.2
  • 6
    • 0032334093 scopus 로고    scopus 로고
    • Minimax estimation via wavelet shrinkage
    • Donoho DL, Johnstone IM (1998) Minimax estimation via wavelet shrinkage. Ann Stat 26: 879-921.
    • (1998) Ann Stat , vol.26 , pp. 879-921
    • Donoho, D.L.1    Johnstone, I.M.2
  • 7
    • 0041958932 scopus 로고
    • Ideal spatial adaption by wavelet shrinkage
    • Donoho DL, Johnstone IM (1994) Ideal spatial adaption by wavelet shrinkage. Biometrika 81: 425-455.
    • (1994) Biometrika , vol.81 , pp. 425-455
    • Donoho, D.L.1    Johnstone, I.M.2
  • 8
    • 0031098254 scopus 로고    scopus 로고
    • Using wavelet network in nonparametric estimation
    • Zhang Q (1997) Using wavelet network in nonparametric estimation. IEEE Trans Neural Netw 8: 227-236.
    • (1997) IEEE Trans Neural Netw , vol.8 , pp. 227-236
    • Zhang, Q.1
  • 9
    • 0027151141 scopus 로고
    • Analysis and synthesis of feedforward neural networks using discrete affine wavelet transforms
    • Pati YC, Krishnaprasad PS (1993) Analysis and synthesis of feedforward neural networks using discrete affine wavelet transforms. IEEE Trans Neural Netw 4: 73-85.
    • (1993) IEEE Trans Neural Netw , vol.4 , pp. 73-85
    • Pati, Y.C.1    Krishnaprasad, P.S.2
  • 13
    • 33750417685 scopus 로고    scopus 로고
    • Wavelet-based nonlinear multiscale decomposition model for electricity load forecasting
    • Benaouda D, Murtagh G, Starck J-L, Renaud O (2006) Wavelet-based nonlinear multiscale decomposition model for electricity load forecasting. Neurocomputing 70: 139-154.
    • (2006) Neurocomputing , vol.70 , pp. 139-154
    • Benaouda, D.1    Murtagh, G.2    Starck, J.-L.3    Renaud, O.4
  • 14
    • 0035343043 scopus 로고    scopus 로고
    • Neural-wavelet methodology for load forecasting
    • Gao R, Tsoukalas HI (2001) Neural-wavelet methodology for load forecasting. J Intell Robot Syst 31: 149-157.
    • (2001) J Intell Robot Syst , vol.31 , pp. 149-157
    • Gao, R.1    Tsoukalas, H.I.2
  • 15
    • 34548162153 scopus 로고    scopus 로고
    • Application of bacterial foraging technique trained artificial and wavelet neural networks in load forecasting
    • Ulugammai M, Venkatesh P, Kannan PS, Padhy NP (2007) Application of bacterial foraging technique trained artificial and wavelet neural networks in load forecasting. Neurocomputing 70: 2659-2667.
    • (2007) Neurocomputing , vol.70 , pp. 2659-2667
    • Ulugammai, M.1    Venkatesh, P.2    Kannan, P.S.3    Padhy, N.P.4
  • 16
    • 0034559472 scopus 로고    scopus 로고
    • Wavelet transform and neural networks for short-term electrical load forecasting
    • Yao SJ, Song YH, Zhang LZ, Cheng XY (2000) Wavelet transform and neural networks for short-term electrical load forecasting. Energy Convers Manag 41: 1975-1988.
    • (2000) Energy Convers Manag , vol.41 , pp. 1975-1988
    • Yao, S.J.1    Song, Y.H.2    Zhang, L.Z.3    Cheng, X.Y.4
  • 17
    • 29444444293 scopus 로고    scopus 로고
    • Time-series prediction using a local linear wavelet neural wavelet
    • Chen Y, Yang B, Dong J (2006) Time-series prediction using a local linear wavelet neural wavelet. Neurocomputing 69: 449-465.
    • (2006) Neurocomputing , vol.69 , pp. 449-465
    • Chen, Y.1    Yang, B.2    Dong, J.3
  • 19
    • 28844476524 scopus 로고    scopus 로고
    • Adaptive wavelets for signal classification and compression
    • Kadambe S, Srinivasan P (2006) Adaptive wavelets for signal classification and compression. Int J Electron Commun 60: 45-55.
    • (2006) Int J Electron Commun , vol.60 , pp. 45-55
    • Kadambe, S.1    Srinivasan, P.2
  • 20
    • 0000695619 scopus 로고    scopus 로고
    • Wavelet networks for sensor signal classification in flank wear assessment
    • Pittner S, Kamarthi SV, Gao Q (1998) Wavelet networks for sensor signal classification in flank wear assessment. J Intell Manuf 9: 315-322.
    • (1998) J Intell Manuf , vol.9 , pp. 315-322
    • Pittner, S.1    Kamarthi, S.V.2    Gao, Q.3
  • 21
    • 24344510343 scopus 로고    scopus 로고
    • Wavelet neural network classification of eeg signals by using AR model with MLE pre-processing
    • Subasi A, Alkan A, Koklukaya E, Kiymik MK (2005) Wavelet neural network classification of eeg signals by using AR model with MLE pre-processing. Neural Netw 18: 985-997.
    • (2005) Neural Netw , vol.18 , pp. 985-997
    • Subasi, A.1    Alkan, A.2    Koklukaya, E.3    Kiymik, M.K.4
  • 22
    • 35648999424 scopus 로고    scopus 로고
    • Learning algorithm of wavelet network based on sampling theory
    • Zhang Z (2007) Learning algorithm of wavelet network based on sampling theory. Neurocomputing 71: 224-269.
    • (2007) Neurocomputing , vol.71 , pp. 224-269
    • Zhang, Z.1
  • 23
  • 24
    • 0034284052 scopus 로고    scopus 로고
    • Initialization by selection for wavelet network training
    • Oussar Y, Dreyfus G (2000) Initialization by selection for wavelet network training. Neurocomputing 34: 131-143.
    • (2000) Neurocomputing , vol.34 , pp. 131-143
    • Oussar, Y.1    Dreyfus, G.2
  • 25
    • 0032584927 scopus 로고    scopus 로고
    • Training wavelet networks for nonlinear dynamic input output modelling
    • Oussar Y, Rivals I, Presonnaz L, Dreyfus G (1998) Training wavelet networks for nonlinear dynamic input output modelling. Neurocomputing 20: 173-188.
    • (1998) Neurocomputing , vol.20 , pp. 173-188
    • Oussar, Y.1    Rivals, I.2    Presonnaz, L.3    Dreyfus, G.4
  • 26
    • 34249052194 scopus 로고    scopus 로고
    • Wavelet networks for nonlinear system modelling
    • Postalcioglu S, Becerikli Y (2007) Wavelet networks for nonlinear system modelling. Neural Comput Appl 16: 434-441.
    • (2007) Neural Comput Appl , vol.16 , pp. 434-441
    • Postalcioglu, S.1    Becerikli, Y.2
  • 27
    • 23044434528 scopus 로고    scopus 로고
    • A new class of wavelet networks for nonlinear system identification
    • Billings SA, Wei H-L (2005) A new class of wavelet networks for nonlinear system identification. IEEE Trans Neural Netw 16: 862-874.
    • (2005) IEEE Trans Neural Netw , vol.16 , pp. 862-874
    • Billings, S.A.1    Wei, H.-L.2
  • 28
    • 0035441348 scopus 로고    scopus 로고
    • Multiwavelet neural network and its approximation properties
    • Jiao L, Pan J, Fang Y (2001) Multiwavelet neural network and its approximation properties. IEEE Trans Neural Netw 12: 1060-1066.
    • (2001) IEEE Trans Neural Netw , vol.12 , pp. 1060-1066
    • Jiao, L.1    Pan, J.2    Fang, Y.3
  • 29
    • 0001379053 scopus 로고
    • Neural network adaptive wavelets for signal representation and classification
    • Szu H, Telfer B, Kadambe S (1992) Neural network adaptive wavelets for signal representation and classification. Opt Eng 31: 1907-1916.
    • (1992) Opt Eng , vol.31 , pp. 1907-1916
    • Szu, H.1    Telfer, B.2    Kadambe, S.3
  • 30
    • 0032046204 scopus 로고    scopus 로고
    • On-line successive synthesis of wavelet networks
    • Wong K-W, Leung AC-S (1998) On-line successive synthesis of wavelet networks. Neural Process Lett 7: 91-100.
    • (1998) Neural Process Lett , vol.7 , pp. 91-100
    • Wong, K.-W.1    Leung, A.C.-S.2
  • 31
    • 23044460437 scopus 로고    scopus 로고
    • Principal component-wavelet networks as a new multivariate calibration model
    • Khayamian T, Ensafi AA, Tabaraki R, Esteki M (2005) Principal component-wavelet networks as a new multivariate calibration model. Anal Lett 38: 1447-1489.
    • (2005) Anal Lett , vol.38 , pp. 1447-1489
    • Khayamian, T.1    Ensafi, A.A.2    Tabaraki, R.3    Esteki, M.4
  • 32
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation. Regression estimation, and signal processing
    • Vapnik V, Golowich SE, Smola A (1996) Support vector method for function approximation. Regression estimation, and signal processing. Adv Neural Inf Process Syst 9: 281-287.
    • (1996) Adv Neural Inf Process Syst , vol.9 , pp. 281-287
    • Vapnik, V.1    Golowich, S.E.2    Smola, A.3
  • 33
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Knowl Discov Data Min 121-167.
    • (1998) Knowl Discov Data Min , pp. 121-167
    • Burges, C.J.C.1
  • 35
    • 0035676247 scopus 로고    scopus 로고
    • Support vector machines for identifying organisms -a comparison with strongly partitioned radial basis function networks
    • Morris CW, Autret A, Boddy L (2001) Support vector machines for identifying organisms -a comparison with strongly partitioned radial basis function networks. Ecol Model 146: 57-67.
    • (2001) Ecol Model , vol.146 , pp. 57-67
    • Morris, C.W.1    Autret, A.2    Boddy, L.3
  • 36
    • 0742268991 scopus 로고    scopus 로고
    • Support vector machine with adaptive parameters in financial time series forecasting
    • Cao LJ, Tay EHF (2003) Support vector machine with adaptive parameters in financial time series forecasting. IEEE Trans Neural Netw 14: 1506-1518.
    • (2003) IEEE Trans Neural Netw , vol.14 , pp. 1506-1518
    • Cao, L.J.1    Tay, E.H.F.2
  • 39
    • 4744360154 scopus 로고    scopus 로고
    • Hedging the force of nature
    • Hanley M (1999) Hedging the force of nature. Risk Prof 1: 21-25.
    • (1999) Risk Prof , vol.1 , pp. 21-25
    • Hanley, M.1
  • 40
    • 78049360223 scopus 로고    scopus 로고
    • Weather derivatives running hot
    • Ceniceros R (2006) Weather derivatives running hot. Bus Insur 40(32): 24-35.
    • (2006) Bus Insur , vol.40 , Issue.32 , pp. 24-35
    • Ceniceros, R.1
  • 43
    • 47749125350 scopus 로고    scopus 로고
    • Modelling temperature time dependent speed of mean reversion in the context of weather derivative pricing
    • Zapranis A, Alexandridis A (2008) Modelling temperature time dependent speed of mean reversion in the context of weather derivative pricing. Appl Math Finance 15: 355-386.
    • (2008) Appl Math Finance , vol.15 , pp. 355-386
    • Zapranis, A.1    Alexandridis, A.2
  • 44
    • 70350710029 scopus 로고    scopus 로고
    • Weather derivatives pricing: modelling the seasonal residuals variance of an Ornstein-Uhlenbeck temperature process with neural networks
    • Zapranis A, Alexandridis A (2009) Weather derivatives pricing: modelling the seasonal residuals variance of an Ornstein-Uhlenbeck temperature process with neural networks. Neurocomputing 73: 37-48.
    • (2009) Neurocomputing , vol.73 , pp. 37-48
    • Zapranis, A.1    Alexandridis, A.2
  • 46
    • 16644368291 scopus 로고    scopus 로고
    • Stochastic modelling of temperature variations with a view towards weather derivatives
    • Benth FE, Saltyte-Benth J (2005) Stochastic modelling of temperature variations with a view towards weather derivatives. Appl Math Finance 12: 53-85.
    • (2005) Appl Math Finance , vol.12 , pp. 53-85
    • Benth, F.E.1    Saltyte-Benth, J.2
  • 47
    • 35148885074 scopus 로고    scopus 로고
    • The volatility of temperature and pricing of weather derivatives
    • Benth FE, Saltyte-Benth J (2007) The volatility of temperature and pricing of weather derivatives. Quant Finance 7: 553-561.
    • (2007) Quant Finance , vol.7 , pp. 553-561
    • Benth, F.E.1    Saltyte-Benth, J.2
  • 49
    • 85008814939 scopus 로고    scopus 로고
    • Dynamical pricing of weather derivatives
    • Brody CD, Syroka J, Zervos M (2002) Dynamical pricing of weather derivatives. Quant Finance 2: 189-198.
    • (2002) Quant Finance , vol.2 , pp. 189-198
    • Brody, C.D.1    Syroka, J.2    Zervos, M.3
  • 50
    • 0345999991 scopus 로고    scopus 로고
    • Risk weather risk special report, energy and power risk management
    • Cao M, Wei J (2000) Pricing the weather. Risk weather risk special report, energy and power risk management, pp 67-70.
    • (2000) Pricing the weather , pp. 67-70
    • Cao, M.1    Wei, J.2
  • 51
    • 7544219778 scopus 로고    scopus 로고
    • Working Paper. The Rotman Graduate School of Management, The University of Toronto, Toronto
    • Cao M, Wei J (1999) Pricing weather derivatives: an equilibrium approach. Working Paper. The Rotman Graduate School of Management, The University of Toronto, Toronto.
    • (1999) Pricing weather derivatives: an equilibrium approach
    • Cao, M.1    Wei, J.2
  • 54
    • 0346433436 scopus 로고    scopus 로고
    • On arbitrage-free pricing of weather derivatives based on fractional Brownian motion
    • Benth FE (2003) On arbitrage-free pricing of weather derivatives based on fractional Brownian motion. Appl Math Finance 10: 303-324.
    • (2003) Appl Math Finance , vol.10 , pp. 303-324
    • Benth, F.E.1
  • 55
    • 84874022975 scopus 로고    scopus 로고
    • The weather derivatives market: Modelling and pricing temperature
    • vol. Ph. D. University of Lugano, Lugano, Switzerland
    • Bellini F (2005) The weather derivatives market: Modelling and pricing temperature. Faculty of Economics, vol. Ph. D. University of Lugano, Lugano, Switzerland.
    • (2005) Faculty of Economics
    • Bellini, F.1
  • 56
    • 80051667727 scopus 로고    scopus 로고
    • Weather derivatives pricing: modelling the seasonal residuals variance of an Ornstein-Uhlenbeck temperature process with neural networks
    • Thessaloniki, Greece
    • Zapranis A, Alexandridis A (2007) Weather derivatives pricing: modelling the seasonal residuals variance of an Ornstein-Uhlenbeck temperature process with neural networks. In: EANN 2007, Thessaloniki, Greece.
    • (2007) EANN 2007
    • Zapranis, A.1    Alexandridis, A.2
  • 59
    • 0036825823 scopus 로고    scopus 로고
    • A basis selection algorithm for wavelet neural networks
    • Xu J, Ho DWC (2002) A basis selection algorithm for wavelet neural networks. Neurocomputing 48: 681-689.
    • (2002) Neurocomputing , vol.48 , pp. 681-689
    • Xu, J.1    Ho, D.W.C.2
  • 60
    • 26844554927 scopus 로고    scopus 로고
    • A constructive algorithm for wavelet neural networks
    • Xu J, Ho DWC (2005) A constructive algorithm for wavelet neural networks. Lecture notes in computer science, pp 730-739.
    • (2005) Lecture notes in computer science , pp. 730-739
    • Xu, J.1    Ho, D.W.C.2
  • 62
    • 0029411990 scopus 로고
    • Space-frequency localized basis function networks for nonlinear system estimation and control
    • Cannon M, Slotine J-JE (1995) Space-frequency localized basis function networks for nonlinear system estimation and control. Neurocomputing 9: 293-342.
    • (1995) Neurocomputing , vol.9 , pp. 293-342
    • Cannon, M.1    Slotine, J.-J.E.2
  • 64
    • 85016184188 scopus 로고    scopus 로고
    • Pricing weather derivatives by marginal value
    • Davis M (2001) Pricing weather derivatives by marginal value. Quant Finance 1: 1-4.
    • (2001) Quant Finance , vol.1 , pp. 1-4
    • Davis, M.1
  • 65
    • 0010589635 scopus 로고    scopus 로고
    • Weather risk special report, energy power risk management
    • Dornier F, Queruel M (2000) Caution to the wind. Weather risk special report, energy power risk management, pp 30-32.
    • (2000) Caution to the wind , pp. 30-32
    • Dornier, F.1    Queruel, M.2
  • 66
    • 80051669908 scopus 로고    scopus 로고
    • Weather derivatives, FOW special support
    • Moreno M (2000) Riding the temp. Weather derivatives, FOW special support.
    • (2000) Riding the temp
    • Moreno, M.1
  • 67
    • 0037077324 scopus 로고    scopus 로고
    • Long memory in surface air temperature: detection modelling and application to weather derivative valuation
    • Caballero R, Jewson S, Brix A (2002) Long memory in surface air temperature: detection modelling and application to weather derivative valuation. Clim Res 21: 127-140.
    • (2002) Clim Res , vol.21 , pp. 127-140
    • Caballero, R.1    Jewson, S.2    Brix, A.3
  • 68
    • 85016207673 scopus 로고    scopus 로고
    • Alternative approaches to weather derivatives pricing
    • Geman H, Leonardi M-P (2005) Alternative approaches to weather derivatives pricing. Manag Finance 31: 46-72.
    • (2005) Manag Finance , vol.31 , pp. 46-72
    • Geman, H.1    Leonardi, M.-P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.