-
2
-
-
0001918317
-
Mathematical analysis of HIV - I dynamics in vivo
-
Perelson A.S., Nelson P.W. Mathematical analysis of HIV - I dynamics in vivo. SIAM Rev. 1999, 41(1):3-44.
-
(1999)
SIAM Rev.
, vol.41
, Issue.1
, pp. 3-44
-
-
Perelson, A.S.1
Nelson, P.W.2
-
4
-
-
0037466387
-
The dynamics of T-cell fratricide: application of a robust approach to mathematical modelling in immunology
-
Asquith B., Bangham C.R.M. The dynamics of T-cell fratricide: application of a robust approach to mathematical modelling in immunology. J. Theoret. Biol. 2003, 222:53-69.
-
(2003)
J. Theoret. Biol.
, vol.222
, pp. 53-69
-
-
Asquith, B.1
Bangham, C.R.M.2
-
5
-
-
0025871325
-
Mathematical biology of HIV infections: antigenic variation and diversity threshold
-
Nowak M., May R. Mathematical biology of HIV infections: antigenic variation and diversity threshold. Math. Biosci. 1991, 106:1-21.
-
(1991)
Math. Biosci.
, vol.106
, pp. 1-21
-
-
Nowak, M.1
May, R.2
-
6
-
-
29844442304
-
An iterative method for solving nonlinear functional equations
-
Daftardar-Gejji V., Jafari H. An iterative method for solving nonlinear functional equations. J. Math. Anal. Appl. 2006, 316(2):753-763.
-
(2006)
J. Math. Anal. Appl.
, vol.316
, Issue.2
, pp. 753-763
-
-
Daftardar-Gejji, V.1
Jafari, H.2
-
7
-
-
0032307661
-
Approximate analytical solution for seepage flow with fractional derivatives in porous media
-
He J.H. Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput. Methods Appl. Mech. Engng. 1998, 167:57-68.
-
(1998)
Comput. Methods Appl. Mech. Engng.
, vol.167
, pp. 57-68
-
-
He, J.H.1
-
8
-
-
24144494623
-
An explicit and numerical solutions of the fractional KdV equation
-
Momani S. An explicit and numerical solutions of the fractional KdV equation. Math. Comput. Simulation 2005, 70(2):110-118.
-
(2005)
Math. Comput. Simulation
, vol.70
, Issue.2
, pp. 110-118
-
-
Momani, S.1
-
9
-
-
27744514614
-
Non-perturbative analytical solutions of the space- and time-fractional Burgers equations
-
Momani S. Non-perturbative analytical solutions of the space- and time-fractional Burgers equations. Chaos Solitons Fractals 2006, 28(4):930-937.
-
(2006)
Chaos Solitons Fractals
, vol.28
, Issue.4
, pp. 930-937
-
-
Momani, S.1
-
10
-
-
33744981446
-
Analytical solution of a time-fractional Navier-Stokes equation by Adomian decomposition method
-
Momani S., Odibat Z. Analytical solution of a time-fractional Navier-Stokes equation by Adomian decomposition method. Appl. Math. Comput. 2006, 177(2):488-494.
-
(2006)
Appl. Math. Comput.
, vol.177
, Issue.2
, pp. 488-494
-
-
Momani, S.1
Odibat, Z.2
-
11
-
-
33646878106
-
Analytical approach to linear fractional partial differential equations arising in fluid mechanics
-
Momani S., Odibat Z. Analytical approach to linear fractional partial differential equations arising in fluid mechanics. Phys. Lett. A 2006, 355:271-279.
-
(2006)
Phys. Lett. A
, vol.355
, pp. 271-279
-
-
Momani, S.1
Odibat, Z.2
-
12
-
-
0016985760
-
Nonlinear stochastic differential equations
-
Adomian G. Nonlinear stochastic differential equations. J. Math. Anal. Appl. 1976, 55:441-452.
-
(1976)
J. Math. Anal. Appl.
, vol.55
, pp. 441-452
-
-
Adomian, G.1
-
13
-
-
0041185368
-
A review of the decomposition method in applied mathematics
-
Adomian G. A review of the decomposition method in applied mathematics. J. Math. Anal. Appl. 1988, 135:501-544.
-
(1988)
J. Math. Anal. Appl.
, vol.135
, pp. 501-544
-
-
Adomian, G.1
-
15
-
-
0009867678
-
The decomposition method for fractional differential equations
-
Shawagfeh N.T. The decomposition method for fractional differential equations. J. Fract. Calc. 1999, 16:27-33.
-
(1999)
J. Fract. Calc.
, vol.16
, pp. 27-33
-
-
Shawagfeh, N.T.1
-
16
-
-
32144452761
-
The modified decomposition method for analytic treatment of differential equations
-
Wazwaz A.M. The modified decomposition method for analytic treatment of differential equations. Appl. Math. Comput. 2006, 173:165-176.
-
(2006)
Appl. Math. Comput.
, vol.173
, pp. 165-176
-
-
Wazwaz, A.M.1
-
17
-
-
33751512215
-
Decomposition method for solving fractional Riccati differential equations
-
Momani S., Shawagfeh N.T. Decomposition method for solving fractional Riccati differential equations. Appl. Math. Comput. 2006, 182:1083-1092.
-
(2006)
Appl. Math. Comput.
, vol.182
, pp. 1083-1092
-
-
Momani, S.1
Shawagfeh, N.T.2
-
18
-
-
32144434395
-
Homotopy perturbation method for quadratic Riccati differential equation and comparison with Adomian's decomposition method
-
Abbasbandy S. Homotopy perturbation method for quadratic Riccati differential equation and comparison with Adomian's decomposition method. Appl. Math. Comput. 2006, 173:493-500.
-
(2006)
Appl. Math. Comput.
, vol.173
, pp. 493-500
-
-
Abbasbandy, S.1
-
19
-
-
34247366852
-
A reliable treatment of homotopy perturbation method for Klein-Gordan equations
-
Odibat Z., Momani S. A reliable treatment of homotopy perturbation method for Klein-Gordan equations. Phys. Lett. A 2007, 365(5-6):351-357.
-
(2007)
Phys. Lett. A
, vol.365
, Issue.5-6
, pp. 351-357
-
-
Odibat, Z.1
Momani, S.2
-
20
-
-
35348869861
-
Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order
-
Odibat Z., Momani S. Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order. Chaos Solitons Fractals 2008, 36(1):167-174.
-
(2008)
Chaos Solitons Fractals
, vol.36
, Issue.1
, pp. 167-174
-
-
Odibat, Z.1
Momani, S.2
-
21
-
-
33748425302
-
Numerical comparison of methods for solving linear differential equations of fractional order
-
Momani S., Odibat Z. Numerical comparison of methods for solving linear differential equations of fractional order. Chaos Solitons Fractals 2007, 31:1248-1255.
-
(2007)
Chaos Solitons Fractals
, vol.31
, pp. 1248-1255
-
-
Momani, S.1
Odibat, Z.2
-
22
-
-
34548384362
-
Numerical methods for nonlinear partial differential equations of fractional order
-
Odibat Z., Momani S. Numerical methods for nonlinear partial differential equations of fractional order. Appl. Math. Modelling 2008, 32(1):28-39.
-
(2008)
Appl. Math. Modelling
, vol.32
, Issue.1
, pp. 28-39
-
-
Odibat, Z.1
Momani, S.2
-
23
-
-
34250661428
-
Numerical approach to differential equations of fractional order
-
Momani S., Odibat Z. Numerical approach to differential equations of fractional order. J. Comput. Appl. Math. 2007, 207:96-110.
-
(2007)
J. Comput. Appl. Math.
, vol.207
, pp. 96-110
-
-
Momani, S.1
Odibat, Z.2
-
24
-
-
34248375297
-
A new modification of the homotopy perturbation method for linear and nonlinear operators
-
Odibat Z. A new modification of the homotopy perturbation method for linear and nonlinear operators. Appl. Math. Comput. 2007, 189(1):746-753.
-
(2007)
Appl. Math. Comput.
, vol.189
, Issue.1
, pp. 746-753
-
-
Odibat, Z.1
-
25
-
-
0032672778
-
Homotopy perturbation technique
-
He J.H. Homotopy perturbation technique. Comput. Methods Appl. Eng. 1999, 178:257-262.
-
(1999)
Comput. Methods Appl. Eng.
, vol.178
, pp. 257-262
-
-
He, J.H.1
-
26
-
-
18844426016
-
Application of homotopy perturbation method to nonlinear wave equations
-
He J.H. Application of homotopy perturbation method to nonlinear wave equations. Chaos Solitons Fractals 2005, 26(3):695-700.
-
(2005)
Chaos Solitons Fractals
, vol.26
, Issue.3
, pp. 695-700
-
-
He, J.H.1
-
27
-
-
1242287587
-
The homotopy perturbation method for nonlinear oscillators with discontinuities
-
He J.H. The homotopy perturbation method for nonlinear oscillators with discontinuities. Appl. Math. Comput. 2004, 151:287-292.
-
(2004)
Appl. Math. Comput.
, vol.151
, pp. 287-292
-
-
He, J.H.1
-
28
-
-
17844387391
-
Homotopy perturbation method for bifurcation of nonlinear problems
-
He J.H. Homotopy perturbation method for bifurcation of nonlinear problems. Int. J. Nonlinear Sci. Numer. Simul. 2005, 6(2):207-208.
-
(2005)
Int. J. Nonlinear Sci. Numer. Simul.
, vol.6
, Issue.2
, pp. 207-208
-
-
He, J.H.1
-
30
-
-
77956897779
-
Construction of analytical solutions to fractional differential equations using homotopy analysis method
-
IJAM_40_2_01
-
Ajou A.E., Odibat Z., Momani S., Alawneh A. Construction of analytical solutions to fractional differential equations using homotopy analysis method. IAENG Int. J. Appl. Math. 2010, 40(2). IJAM_40_2_01.
-
(2010)
IAENG Int. J. Appl. Math.
, vol.40
, Issue.2
-
-
Ajou, A.E.1
Odibat, Z.2
Momani, S.3
Alawneh, A.4
-
31
-
-
30344464250
-
Application of variation iteration method to nonlinear differential equations of fractional order
-
Odibat Z., Momani S. Application of variation iteration method to nonlinear differential equations of fractional order. Int. J. Nonlinear Sci. Numer. Simul. 2006, 1(7):15-27.
-
(2006)
Int. J. Nonlinear Sci. Numer. Simul.
, vol.1
, Issue.7
, pp. 15-27
-
-
Odibat, Z.1
Momani, S.2
-
32
-
-
0000092673
-
Variational iteration method - a kind of non-linear analytic technique: some examples
-
He J.H. Variational iteration method - a kind of non-linear analytic technique: some examples. Int. J. Nonlinear Mech. 1999, 34:699-708.
-
(1999)
Int. J. Nonlinear Mech.
, vol.34
, pp. 699-708
-
-
He, J.H.1
-
33
-
-
0040184009
-
Variational iteration method for autonomous ordinary differential systems
-
He J.H. Variational iteration method for autonomous ordinary differential systems. Appl. Math. Comput. 2000, 114:115-123.
-
(2000)
Appl. Math. Comput.
, vol.114
, pp. 115-123
-
-
He, J.H.1
-
35
-
-
39849101342
-
Solving systems of fractional differential equations using differential transform method
-
Ertürk V.S., Momani S. Solving systems of fractional differential equations using differential transform method. J. Comput. Appl. Math. 2008, 215:142-151.
-
(2008)
J. Comput. Appl. Math.
, vol.215
, pp. 142-151
-
-
Ertürk, V.S.1
Momani, S.2
-
36
-
-
34250215244
-
Solution of fractional differential equations by using differential transform method
-
Arikoglu A., Ozkol I. Solution of fractional differential equations by using differential transform method. Chaos Solitons Fractals 2007, 34(5):1473-1481.
-
(2007)
Chaos Solitons Fractals
, vol.34
, Issue.5
, pp. 1473-1481
-
-
Arikoglu, A.1
Ozkol, I.2
-
37
-
-
74149088718
-
Solutions of a fractional oscillator by using differential transform method
-
Al-rabtah A., Ertürk V.S., Momani S. Solutions of a fractional oscillator by using differential transform method. Comput. Math. Appl. 2010, 59:1356-1362.
-
(2010)
Comput. Math. Appl.
, vol.59
, pp. 1356-1362
-
-
Al-rabtah, A.1
Ertürk, V.S.2
Momani, S.3
-
38
-
-
0000443213
-
On solving the initial value problems using the differential transformation method
-
Jang M.J., Chen C.L., Liu Y.C. On solving the initial value problems using the differential transformation method. Appl. Math. Comput. 2000, 115:145-160.
-
(2000)
Appl. Math. Comput.
, vol.115
, pp. 145-160
-
-
Jang, M.J.1
Chen, C.L.2
Liu, Y.C.3
-
39
-
-
0012135963
-
Analysis of the response of a strongly nonlinear damped system using a differential transformation technique
-
Jang M.J., Chen C.L., Liu Y.C. Analysis of the response of a strongly nonlinear damped system using a differential transformation technique. Appl. Math. Comput. 1997, 88:137-151.
-
(1997)
Appl. Math. Comput.
, vol.88
, pp. 137-151
-
-
Jang, M.J.1
Chen, C.L.2
Liu, Y.C.3
-
40
-
-
0037170713
-
On solving some eigenvalue problems by using a differential Transformation
-
Abdel-Halim Hassan I.H. On solving some eigenvalue problems by using a differential Transformation. Appl. Math. Comput. 2002, 127:1-22.
-
(2002)
Appl. Math. Comput.
, vol.127
, pp. 1-22
-
-
Abdel-Halim, H.I.H.1
-
41
-
-
79651474215
-
Linear superposition principle applying to Hirota bilinear equations
-
Ma W.X., Fan E. Linear superposition principle applying to Hirota bilinear equations. Comput. Math. Appl. 2011, 61:950-959.
-
(2011)
Comput. Math. Appl.
, vol.61
, pp. 950-959
-
-
Ma, W.X.1
Fan, E.2
-
42
-
-
78149402626
-
A multiple exp-function method for nonlinear differential equations and its application
-
8
-
Ma W.X., Huang T., Zhang Y. A multiple exp-function method for nonlinear differential equations and its application. Phys. Scr. 2010, 82:065003. (8 pp.).
-
(2010)
Phys. Scr.
, vol.82
, pp. 065003
-
-
Ma, W.X.1
Huang, T.2
Zhang, Y.3
-
43
-
-
75349091961
-
A multi-step differential transform method and application to non-chaotic or chaotic systems
-
Odibat Z.M., Bertelle C., Aziz-Alaoui M.A., Duchamp G.H.E. A multi-step differential transform method and application to non-chaotic or chaotic systems. Comput. Math. Appl. 2010, 59:1462-1472.
-
(2010)
Comput. Math. Appl.
, vol.59
, pp. 1462-1472
-
-
Odibat, Z.M.1
Bertelle, C.2
Aziz-Alaoui, M.A.3
Duchamp, G.H.E.4
-
44
-
-
84977255207
-
Linear models of dissipation whose Q is almost frequency independent II
-
Caputo M. Linear models of dissipation whose Q is almost frequency independent II. Geophys. J. Roy. Astronom. Soc. 1967, 13:529-539.
-
(1967)
Geophys. J. Roy. Astronom. Soc.
, vol.13
, pp. 529-539
-
-
Caputo, M.1
|