메뉴 건너뛰기




Volumn 54, Issue 9-10, 2011, Pages 2132-2138

Solving a fractional order model of HIV infection of CD4+ T cells

Author keywords

A model for HIV infection of cd4+ t cells; Fractional order ordinary differential equation systems; Multi step differential transform method

Indexed keywords

ANALYTICAL SOLUTIONS; DIFFERENTIAL TRANSFORM METHOD; FRACTIONAL DIFFERENTIAL EQUATIONS; FRACTIONAL ORDER; FRACTIONAL ORDER MODELS; FRACTIONAL ORDER ORDINARY DIFFERENTIAL EQUATION SYSTEMS; HIV INFECTION; MULTI-STEP; NUMERICAL SOLUTION; T CELLS;

EID: 80051665104     PISSN: 08957177     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.mcm.2011.05.022     Document Type: Article
Times cited : (73)

References (44)
  • 2
    • 0001918317 scopus 로고    scopus 로고
    • Mathematical analysis of HIV - I dynamics in vivo
    • Perelson A.S., Nelson P.W. Mathematical analysis of HIV - I dynamics in vivo. SIAM Rev. 1999, 41(1):3-44.
    • (1999) SIAM Rev. , vol.41 , Issue.1 , pp. 3-44
    • Perelson, A.S.1    Nelson, P.W.2
  • 4
    • 0037466387 scopus 로고    scopus 로고
    • The dynamics of T-cell fratricide: application of a robust approach to mathematical modelling in immunology
    • Asquith B., Bangham C.R.M. The dynamics of T-cell fratricide: application of a robust approach to mathematical modelling in immunology. J. Theoret. Biol. 2003, 222:53-69.
    • (2003) J. Theoret. Biol. , vol.222 , pp. 53-69
    • Asquith, B.1    Bangham, C.R.M.2
  • 5
    • 0025871325 scopus 로고
    • Mathematical biology of HIV infections: antigenic variation and diversity threshold
    • Nowak M., May R. Mathematical biology of HIV infections: antigenic variation and diversity threshold. Math. Biosci. 1991, 106:1-21.
    • (1991) Math. Biosci. , vol.106 , pp. 1-21
    • Nowak, M.1    May, R.2
  • 6
    • 29844442304 scopus 로고    scopus 로고
    • An iterative method for solving nonlinear functional equations
    • Daftardar-Gejji V., Jafari H. An iterative method for solving nonlinear functional equations. J. Math. Anal. Appl. 2006, 316(2):753-763.
    • (2006) J. Math. Anal. Appl. , vol.316 , Issue.2 , pp. 753-763
    • Daftardar-Gejji, V.1    Jafari, H.2
  • 7
    • 0032307661 scopus 로고    scopus 로고
    • Approximate analytical solution for seepage flow with fractional derivatives in porous media
    • He J.H. Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput. Methods Appl. Mech. Engng. 1998, 167:57-68.
    • (1998) Comput. Methods Appl. Mech. Engng. , vol.167 , pp. 57-68
    • He, J.H.1
  • 8
    • 24144494623 scopus 로고    scopus 로고
    • An explicit and numerical solutions of the fractional KdV equation
    • Momani S. An explicit and numerical solutions of the fractional KdV equation. Math. Comput. Simulation 2005, 70(2):110-118.
    • (2005) Math. Comput. Simulation , vol.70 , Issue.2 , pp. 110-118
    • Momani, S.1
  • 9
    • 27744514614 scopus 로고    scopus 로고
    • Non-perturbative analytical solutions of the space- and time-fractional Burgers equations
    • Momani S. Non-perturbative analytical solutions of the space- and time-fractional Burgers equations. Chaos Solitons Fractals 2006, 28(4):930-937.
    • (2006) Chaos Solitons Fractals , vol.28 , Issue.4 , pp. 930-937
    • Momani, S.1
  • 10
    • 33744981446 scopus 로고    scopus 로고
    • Analytical solution of a time-fractional Navier-Stokes equation by Adomian decomposition method
    • Momani S., Odibat Z. Analytical solution of a time-fractional Navier-Stokes equation by Adomian decomposition method. Appl. Math. Comput. 2006, 177(2):488-494.
    • (2006) Appl. Math. Comput. , vol.177 , Issue.2 , pp. 488-494
    • Momani, S.1    Odibat, Z.2
  • 11
    • 33646878106 scopus 로고    scopus 로고
    • Analytical approach to linear fractional partial differential equations arising in fluid mechanics
    • Momani S., Odibat Z. Analytical approach to linear fractional partial differential equations arising in fluid mechanics. Phys. Lett. A 2006, 355:271-279.
    • (2006) Phys. Lett. A , vol.355 , pp. 271-279
    • Momani, S.1    Odibat, Z.2
  • 12
    • 0016985760 scopus 로고
    • Nonlinear stochastic differential equations
    • Adomian G. Nonlinear stochastic differential equations. J. Math. Anal. Appl. 1976, 55:441-452.
    • (1976) J. Math. Anal. Appl. , vol.55 , pp. 441-452
    • Adomian, G.1
  • 13
    • 0041185368 scopus 로고
    • A review of the decomposition method in applied mathematics
    • Adomian G. A review of the decomposition method in applied mathematics. J. Math. Anal. Appl. 1988, 135:501-544.
    • (1988) J. Math. Anal. Appl. , vol.135 , pp. 501-544
    • Adomian, G.1
  • 15
    • 0009867678 scopus 로고    scopus 로고
    • The decomposition method for fractional differential equations
    • Shawagfeh N.T. The decomposition method for fractional differential equations. J. Fract. Calc. 1999, 16:27-33.
    • (1999) J. Fract. Calc. , vol.16 , pp. 27-33
    • Shawagfeh, N.T.1
  • 16
    • 32144452761 scopus 로고    scopus 로고
    • The modified decomposition method for analytic treatment of differential equations
    • Wazwaz A.M. The modified decomposition method for analytic treatment of differential equations. Appl. Math. Comput. 2006, 173:165-176.
    • (2006) Appl. Math. Comput. , vol.173 , pp. 165-176
    • Wazwaz, A.M.1
  • 17
    • 33751512215 scopus 로고    scopus 로고
    • Decomposition method for solving fractional Riccati differential equations
    • Momani S., Shawagfeh N.T. Decomposition method for solving fractional Riccati differential equations. Appl. Math. Comput. 2006, 182:1083-1092.
    • (2006) Appl. Math. Comput. , vol.182 , pp. 1083-1092
    • Momani, S.1    Shawagfeh, N.T.2
  • 18
    • 32144434395 scopus 로고    scopus 로고
    • Homotopy perturbation method for quadratic Riccati differential equation and comparison with Adomian's decomposition method
    • Abbasbandy S. Homotopy perturbation method for quadratic Riccati differential equation and comparison with Adomian's decomposition method. Appl. Math. Comput. 2006, 173:493-500.
    • (2006) Appl. Math. Comput. , vol.173 , pp. 493-500
    • Abbasbandy, S.1
  • 19
    • 34247366852 scopus 로고    scopus 로고
    • A reliable treatment of homotopy perturbation method for Klein-Gordan equations
    • Odibat Z., Momani S. A reliable treatment of homotopy perturbation method for Klein-Gordan equations. Phys. Lett. A 2007, 365(5-6):351-357.
    • (2007) Phys. Lett. A , vol.365 , Issue.5-6 , pp. 351-357
    • Odibat, Z.1    Momani, S.2
  • 20
    • 35348869861 scopus 로고    scopus 로고
    • Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order
    • Odibat Z., Momani S. Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order. Chaos Solitons Fractals 2008, 36(1):167-174.
    • (2008) Chaos Solitons Fractals , vol.36 , Issue.1 , pp. 167-174
    • Odibat, Z.1    Momani, S.2
  • 21
    • 33748425302 scopus 로고    scopus 로고
    • Numerical comparison of methods for solving linear differential equations of fractional order
    • Momani S., Odibat Z. Numerical comparison of methods for solving linear differential equations of fractional order. Chaos Solitons Fractals 2007, 31:1248-1255.
    • (2007) Chaos Solitons Fractals , vol.31 , pp. 1248-1255
    • Momani, S.1    Odibat, Z.2
  • 22
    • 34548384362 scopus 로고    scopus 로고
    • Numerical methods for nonlinear partial differential equations of fractional order
    • Odibat Z., Momani S. Numerical methods for nonlinear partial differential equations of fractional order. Appl. Math. Modelling 2008, 32(1):28-39.
    • (2008) Appl. Math. Modelling , vol.32 , Issue.1 , pp. 28-39
    • Odibat, Z.1    Momani, S.2
  • 23
    • 34250661428 scopus 로고    scopus 로고
    • Numerical approach to differential equations of fractional order
    • Momani S., Odibat Z. Numerical approach to differential equations of fractional order. J. Comput. Appl. Math. 2007, 207:96-110.
    • (2007) J. Comput. Appl. Math. , vol.207 , pp. 96-110
    • Momani, S.1    Odibat, Z.2
  • 24
    • 34248375297 scopus 로고    scopus 로고
    • A new modification of the homotopy perturbation method for linear and nonlinear operators
    • Odibat Z. A new modification of the homotopy perturbation method for linear and nonlinear operators. Appl. Math. Comput. 2007, 189(1):746-753.
    • (2007) Appl. Math. Comput. , vol.189 , Issue.1 , pp. 746-753
    • Odibat, Z.1
  • 25
    • 0032672778 scopus 로고    scopus 로고
    • Homotopy perturbation technique
    • He J.H. Homotopy perturbation technique. Comput. Methods Appl. Eng. 1999, 178:257-262.
    • (1999) Comput. Methods Appl. Eng. , vol.178 , pp. 257-262
    • He, J.H.1
  • 26
    • 18844426016 scopus 로고    scopus 로고
    • Application of homotopy perturbation method to nonlinear wave equations
    • He J.H. Application of homotopy perturbation method to nonlinear wave equations. Chaos Solitons Fractals 2005, 26(3):695-700.
    • (2005) Chaos Solitons Fractals , vol.26 , Issue.3 , pp. 695-700
    • He, J.H.1
  • 27
    • 1242287587 scopus 로고    scopus 로고
    • The homotopy perturbation method for nonlinear oscillators with discontinuities
    • He J.H. The homotopy perturbation method for nonlinear oscillators with discontinuities. Appl. Math. Comput. 2004, 151:287-292.
    • (2004) Appl. Math. Comput. , vol.151 , pp. 287-292
    • He, J.H.1
  • 28
    • 17844387391 scopus 로고    scopus 로고
    • Homotopy perturbation method for bifurcation of nonlinear problems
    • He J.H. Homotopy perturbation method for bifurcation of nonlinear problems. Int. J. Nonlinear Sci. Numer. Simul. 2005, 6(2):207-208.
    • (2005) Int. J. Nonlinear Sci. Numer. Simul. , vol.6 , Issue.2 , pp. 207-208
    • He, J.H.1
  • 30
    • 77956897779 scopus 로고    scopus 로고
    • Construction of analytical solutions to fractional differential equations using homotopy analysis method
    • IJAM_40_2_01
    • Ajou A.E., Odibat Z., Momani S., Alawneh A. Construction of analytical solutions to fractional differential equations using homotopy analysis method. IAENG Int. J. Appl. Math. 2010, 40(2). IJAM_40_2_01.
    • (2010) IAENG Int. J. Appl. Math. , vol.40 , Issue.2
    • Ajou, A.E.1    Odibat, Z.2    Momani, S.3    Alawneh, A.4
  • 31
    • 30344464250 scopus 로고    scopus 로고
    • Application of variation iteration method to nonlinear differential equations of fractional order
    • Odibat Z., Momani S. Application of variation iteration method to nonlinear differential equations of fractional order. Int. J. Nonlinear Sci. Numer. Simul. 2006, 1(7):15-27.
    • (2006) Int. J. Nonlinear Sci. Numer. Simul. , vol.1 , Issue.7 , pp. 15-27
    • Odibat, Z.1    Momani, S.2
  • 32
    • 0000092673 scopus 로고    scopus 로고
    • Variational iteration method - a kind of non-linear analytic technique: some examples
    • He J.H. Variational iteration method - a kind of non-linear analytic technique: some examples. Int. J. Nonlinear Mech. 1999, 34:699-708.
    • (1999) Int. J. Nonlinear Mech. , vol.34 , pp. 699-708
    • He, J.H.1
  • 33
    • 0040184009 scopus 로고    scopus 로고
    • Variational iteration method for autonomous ordinary differential systems
    • He J.H. Variational iteration method for autonomous ordinary differential systems. Appl. Math. Comput. 2000, 114:115-123.
    • (2000) Appl. Math. Comput. , vol.114 , pp. 115-123
    • He, J.H.1
  • 35
    • 39849101342 scopus 로고    scopus 로고
    • Solving systems of fractional differential equations using differential transform method
    • Ertürk V.S., Momani S. Solving systems of fractional differential equations using differential transform method. J. Comput. Appl. Math. 2008, 215:142-151.
    • (2008) J. Comput. Appl. Math. , vol.215 , pp. 142-151
    • Ertürk, V.S.1    Momani, S.2
  • 36
    • 34250215244 scopus 로고    scopus 로고
    • Solution of fractional differential equations by using differential transform method
    • Arikoglu A., Ozkol I. Solution of fractional differential equations by using differential transform method. Chaos Solitons Fractals 2007, 34(5):1473-1481.
    • (2007) Chaos Solitons Fractals , vol.34 , Issue.5 , pp. 1473-1481
    • Arikoglu, A.1    Ozkol, I.2
  • 37
    • 74149088718 scopus 로고    scopus 로고
    • Solutions of a fractional oscillator by using differential transform method
    • Al-rabtah A., Ertürk V.S., Momani S. Solutions of a fractional oscillator by using differential transform method. Comput. Math. Appl. 2010, 59:1356-1362.
    • (2010) Comput. Math. Appl. , vol.59 , pp. 1356-1362
    • Al-rabtah, A.1    Ertürk, V.S.2    Momani, S.3
  • 38
    • 0000443213 scopus 로고    scopus 로고
    • On solving the initial value problems using the differential transformation method
    • Jang M.J., Chen C.L., Liu Y.C. On solving the initial value problems using the differential transformation method. Appl. Math. Comput. 2000, 115:145-160.
    • (2000) Appl. Math. Comput. , vol.115 , pp. 145-160
    • Jang, M.J.1    Chen, C.L.2    Liu, Y.C.3
  • 39
    • 0012135963 scopus 로고    scopus 로고
    • Analysis of the response of a strongly nonlinear damped system using a differential transformation technique
    • Jang M.J., Chen C.L., Liu Y.C. Analysis of the response of a strongly nonlinear damped system using a differential transformation technique. Appl. Math. Comput. 1997, 88:137-151.
    • (1997) Appl. Math. Comput. , vol.88 , pp. 137-151
    • Jang, M.J.1    Chen, C.L.2    Liu, Y.C.3
  • 40
    • 0037170713 scopus 로고    scopus 로고
    • On solving some eigenvalue problems by using a differential Transformation
    • Abdel-Halim Hassan I.H. On solving some eigenvalue problems by using a differential Transformation. Appl. Math. Comput. 2002, 127:1-22.
    • (2002) Appl. Math. Comput. , vol.127 , pp. 1-22
    • Abdel-Halim, H.I.H.1
  • 41
    • 79651474215 scopus 로고    scopus 로고
    • Linear superposition principle applying to Hirota bilinear equations
    • Ma W.X., Fan E. Linear superposition principle applying to Hirota bilinear equations. Comput. Math. Appl. 2011, 61:950-959.
    • (2011) Comput. Math. Appl. , vol.61 , pp. 950-959
    • Ma, W.X.1    Fan, E.2
  • 42
    • 78149402626 scopus 로고    scopus 로고
    • A multiple exp-function method for nonlinear differential equations and its application
    • 8
    • Ma W.X., Huang T., Zhang Y. A multiple exp-function method for nonlinear differential equations and its application. Phys. Scr. 2010, 82:065003. (8 pp.).
    • (2010) Phys. Scr. , vol.82 , pp. 065003
    • Ma, W.X.1    Huang, T.2    Zhang, Y.3
  • 43
    • 75349091961 scopus 로고    scopus 로고
    • A multi-step differential transform method and application to non-chaotic or chaotic systems
    • Odibat Z.M., Bertelle C., Aziz-Alaoui M.A., Duchamp G.H.E. A multi-step differential transform method and application to non-chaotic or chaotic systems. Comput. Math. Appl. 2010, 59:1462-1472.
    • (2010) Comput. Math. Appl. , vol.59 , pp. 1462-1472
    • Odibat, Z.M.1    Bertelle, C.2    Aziz-Alaoui, M.A.3    Duchamp, G.H.E.4
  • 44
    • 84977255207 scopus 로고
    • Linear models of dissipation whose Q is almost frequency independent II
    • Caputo M. Linear models of dissipation whose Q is almost frequency independent II. Geophys. J. Roy. Astronom. Soc. 1967, 13:529-539.
    • (1967) Geophys. J. Roy. Astronom. Soc. , vol.13 , pp. 529-539
    • Caputo, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.