메뉴 건너뛰기




Volumn 74, Issue 16, 2011, Pages 2594-2602

Global and local modelling in RBF networks

Author keywords

Clustering algorithm; Function approximation; Local global modelling; RBF networks

Indexed keywords

APPROXIMATION CAPABILITIES; FUNCTION APPROXIMATION; GLOBAL MODELS; GLOBAL-LOCAL; INPUT SPACE; LINEAR COMBINATIONS; LOCAL APPROXIMATION; LOCAL SEARCH TECHNIQUES; LOCAL-GLOBAL MODELLING; NETWORK OPTIMIZATION; REAL APPLICATIONS; SPECIFIC AREAS; SUBMODELS;

EID: 80051582561     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2011.03.027     Document Type: Article
Times cited : (33)

References (38)
  • 3
    • 80051596076 scopus 로고    scopus 로고
    • Approximation and classification with RBF-type neural networks using flexible local and semi-local transfer functions, in: 4th Conference on Neural Networks and Their Applications, Zakopane, Poland
    • N. Jankowski, Approximation and classification with RBF-type neural networks using flexible local and semi-local transfer functions, in: 4th Conference on Neural Networks and Their Applications, Zakopane, Poland, 1999, pp. 77-82.
    • (1999) , pp. 77-82
    • Jankowski, N.1
  • 4
    • 77952485893 scopus 로고    scopus 로고
    • A fast multi-output RBF neural network construction method
    • Du D., Li K., Fei M. A fast multi-output RBF neural network construction method. Neurocomputing 2010, 73(10-12):2196-2202.
    • (2010) Neurocomputing , vol.73 , Issue.10-12 , pp. 2196-2202
    • Du, D.1    Li, K.2    Fei, M.3
  • 5
    • 67349221521 scopus 로고    scopus 로고
    • Simultaneous input variable and basis function selection for RBF networks
    • Tikka J. Simultaneous input variable and basis function selection for RBF networks. Neurocomputing 2009, 72(10-12):2649-2658. 10.1016/j.neucom.2008.10.003.
    • (2009) Neurocomputing , vol.72 , Issue.10-12 , pp. 2649-2658
    • Tikka, J.1
  • 7
    • 69249205580 scopus 로고    scopus 로고
    • Parallel multiobjective memetic RBFNNS design and feature selection for function approximation problems
    • Guillén A., Pomares H., González J., Rojas I., Valenzuela O., Prieto B. Parallel multiobjective memetic RBFNNS design and feature selection for function approximation problems. Neurocomputing 2009, 72(16-18):3541-3555.
    • (2009) Neurocomputing , vol.72 , Issue.1-18 , pp. 3541-3555
    • Guillén, A.1    Pomares, H.2    González, J.3    Rojas, I.4    Valenzuela, O.5    Prieto, B.6
  • 8
    • 34548186461 scopus 로고    scopus 로고
    • Using fuzzy logic to improve a clustering technique for function approximation
    • Guillén A., González J., Rojas I., Pomares H., Herrera L.J., Valenzuela O., Prieto A. Using fuzzy logic to improve a clustering technique for function approximation. Neurocomputing 2007, 70(16-18):2853-2860. 10.1016/j.neucom.2006.06.017.
    • (2007) Neurocomputing , vol.70 , Issue.16-18 , pp. 2853-2860
    • Guillén, A.1    González, J.2    Rojas, I.3    Pomares, H.4    Herrera, L.J.5    Valenzuela, O.6    Prieto, A.7
  • 9
    • 0000106040 scopus 로고
    • Universal approximation using radial basis functions network
    • Park J., Sandberg J.W. Universal approximation using radial basis functions network. Neural Computations 1991, 3:246-257.
    • (1991) Neural Computations , vol.3 , pp. 246-257
    • Park, J.1    Sandberg, J.W.2
  • 10
    • 33748424239 scopus 로고    scopus 로고
    • The effect of different basis functions on a radial basis function network for time series prediction: a comparative study
    • Harpham C., Dawson C. The effect of different basis functions on a radial basis function network for time series prediction: a comparative study. Neurocomputing 2006, 69(10-12):2161-2170.
    • (2006) Neurocomputing , vol.69 , Issue.10-12 , pp. 2161-2170
    • Harpham, C.1    Dawson, C.2
  • 11
    • 78649974166 scopus 로고    scopus 로고
    • An efficient multi-objective learning algorithm for RBF neural network
    • Kokshenev I., Padua Braga A. An efficient multi-objective learning algorithm for RBF neural network. Neurocomputing 2010, 73:2799-2808.
    • (2010) Neurocomputing , vol.73 , pp. 2799-2808
    • Kokshenev, I.1    Padua Braga, A.2
  • 12
    • 0016451032 scopus 로고
    • An experiment in linguistic synthesis with a fuzzy logic controller
    • Mamdani E., Assilian S. An experiment in linguistic synthesis with a fuzzy logic controller. International Journal Man-Machine Studies 1975, 7(1):1-12.
    • (1975) International Journal Man-Machine Studies , vol.7 , Issue.1 , pp. 1-12
    • Mamdani, E.1    Assilian, S.2
  • 13
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modelling and control
    • Takagi T., Sugeno M. Fuzzy identification of systems and its applications to modelling and control. IEEE Transactions on Systems, Man and Cybernetics 1985, 15:116-132.
    • (1985) IEEE Transactions on Systems, Man and Cybernetics , vol.15 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 14
    • 0033346114 scopus 로고    scopus 로고
    • Knowledge extraction from radial basis function networks and multilayer perceptrons, in: Proceedings of the International Joint Conference on Neural Networks
    • K.J. McGarry, S. Wermter, J. MacIntyre, Knowledge extraction from radial basis function networks and multilayer perceptrons, in: Proceedings of the International Joint Conference on Neural Networks, 1999, pp. 2494-2497.
    • (1999) , pp. 2494-2497
    • McGarry, K.J.1    Wermter, S.2    MacIntyre, J.3
  • 15
    • 0038173250 scopus 로고    scopus 로고
    • Extracting interpretable fuzzy rules from RBF networks
    • Jin Y., Sendhoff B. Extracting interpretable fuzzy rules from RBF networks. Neural Processing Letters 2003, 17:149-164.
    • (2003) Neural Processing Letters , vol.17 , pp. 149-164
    • Jin, Y.1    Sendhoff, B.2
  • 16
    • 0027266182 scopus 로고
    • Functional equivalence between radial basis function networks and fuzzy inference systems
    • Jang J.S.R., Sun C.-T. Functional equivalence between radial basis function networks and fuzzy inference systems. IEEE Transactions on Neural Networks 1993, 4(1):156-159.
    • (1993) IEEE Transactions on Neural Networks , vol.4 , Issue.1 , pp. 156-159
    • Jang, J.S.R.1    Sun, C.-T.2
  • 17
    • 33947282595 scopus 로고    scopus 로고
    • Design for self-organizing fuzzy neural networks based on genetic algorithms
    • Leng G., McGinnity T.M., Prasad G. Design for self-organizing fuzzy neural networks based on genetic algorithms. IEEE Transactions on Fuzzy Systems 2006, 14(6):755-766.
    • (2006) IEEE Transactions on Fuzzy Systems , vol.14 , Issue.6 , pp. 755-766
    • Leng, G.1    McGinnity, T.M.2    Prasad, G.3
  • 18
    • 2542618358 scopus 로고    scopus 로고
    • Efficient learning algorithms for three-layer regular feedforward fuzzy neural networks
    • Liu P., Li H. Efficient learning algorithms for three-layer regular feedforward fuzzy neural networks. IEEE Transactions on Neural Networks 2004, 15(3):545-558.
    • (2004) IEEE Transactions on Neural Networks , vol.15 , Issue.3 , pp. 545-558
    • Liu, P.1    Li, H.2
  • 19
    • 80051601502 scopus 로고
    • Local smoothing of RBF networks, in: Proceedings of the ISANN, Taiwan
    • M.J.L. Orr, Local smoothing of RBF networks, in: Proceedings of the ISANN, Taiwan, 1995.
    • (1995)
    • Orr, M.J.L.1
  • 20
    • 0346076776 scopus 로고    scopus 로고
    • Multiobjective identification of Takagi-Sugeno fuzzy models
    • Johansen T., Babuska R. Multiobjective identification of Takagi-Sugeno fuzzy models. IEEE Transactions on Fuzzy Systems 2003, 11(6):847-860.
    • (2003) IEEE Transactions on Fuzzy Systems , vol.11 , Issue.6 , pp. 847-860
    • Johansen, T.1    Babuska, R.2
  • 21
    • 34548205379 scopus 로고    scopus 로고
    • Self-organizing multi-modeling: a different way to design intelligent predictors
    • Madani K., Thiaw L. Self-organizing multi-modeling: a different way to design intelligent predictors. Neurocomputing 2007, 70(16-18):2836-2852. 10.1016/j.neucom.2006.06.016.
    • (2007) Neurocomputing , vol.70 , Issue.16-18 , pp. 2836-2852
    • Madani, K.1    Thiaw, L.2
  • 22
    • 0033280731 scopus 로고    scopus 로고
    • A highly interpretable form of Sugeno inference systems
    • Bikdash M. A highly interpretable form of Sugeno inference systems. IEEE Transactions on Fuzzy Systems 1999, 7(6):686-696.
    • (1999) IEEE Transactions on Fuzzy Systems , vol.7 , Issue.6 , pp. 686-696
    • Bikdash, M.1
  • 23
    • 18844362190 scopus 로고    scopus 로고
    • Tase, a Taylor series based fuzzy system model that combines interpretability and accuracy
    • Herrera L.J., Pomares H., Rojas I., Valenzuela O., Prieto A. Tase, a Taylor series based fuzzy system model that combines interpretability and accuracy. Fuzzy Sets and Systems 2005, 153:403-427.
    • (2005) Fuzzy Sets and Systems , vol.153 , pp. 403-427
    • Herrera, L.J.1    Pomares, H.2    Rojas, I.3    Valenzuela, O.4    Prieto, A.5
  • 25
    • 0031238274 scopus 로고    scopus 로고
    • Radial basis function networks, regression weights, and the expectation-maximization algorithm
    • Langari R., Wang L., Yen J. Radial basis function networks, regression weights, and the expectation-maximization algorithm. IEEE Transactions on Systems, Man and Cybernetics A 1997, 27(5):613-623.
    • (1997) IEEE Transactions on Systems, Man and Cybernetics A , vol.27 , Issue.5 , pp. 613-623
    • Langari, R.1    Wang, L.2    Yen, J.3
  • 27
    • 0001362410 scopus 로고
    • The Levenberg-Marquardt algorithm implementation and theory
    • More J. The Levenberg-Marquardt algorithm implementation and theory. Lecture Notes in Mathematics 1978, vol. 630:105-116.
    • (1978) Lecture Notes in Mathematics , vol.630 , pp. 105-116
    • More, J.1
  • 28
    • 0000672424 scopus 로고
    • Fast learning in networks of locally-tuned processing units
    • Moody J., Darken C. Fast learning in networks of locally-tuned processing units. Neural Computations 1989, 1(2):281-294.
    • (1989) Neural Computations , vol.1 , Issue.2 , pp. 281-294
    • Moody, J.1    Darken, C.2
  • 29
    • 79952454761 scopus 로고    scopus 로고
    • The Tase-NF model for function approximation problems: approaching local and global modelling
    • Herrera L.J., Pomares H., Rojas I., Guillen A., Valenzuela O. The Tase-NF model for function approximation problems: approaching local and global modelling. Fuzzy Sets and Systems 2011, 171(1):1-21.
    • (2011) Fuzzy Sets and Systems , vol.171 , Issue.1 , pp. 1-21
    • Herrera, L.J.1    Pomares, H.2    Rojas, I.3    Guillen, A.4    Valenzuela, O.5
  • 30
    • 76749090989 scopus 로고    scopus 로고
    • Prediction of color change after tooth bleaching using fuzzy logic for vita classical shades identification
    • Herrera L.J., Pulgar R., Santana J., Cardona J.C., Guillén A., Rojas I., del Mar Pérez M. Prediction of color change after tooth bleaching using fuzzy logic for vita classical shades identification. Applied Optics 2010, 49(3):422-429.
    • (2010) Applied Optics , vol.49 , Issue.3 , pp. 422-429
    • Herrera, L.J.1    Pulgar, R.2    Santana, J.3    Cardona, J.C.4    Guillén, A.5    Rojas, I.6    del Mar Pérez, M.7
  • 31
    • 0032961082 scopus 로고    scopus 로고
    • A global learning algorithm for a RBF network
    • Zhu Q., Cai Y., Liu L. A global learning algorithm for a RBF network. Neural Networks 1999, 12:527-540.
    • (1999) Neural Networks , vol.12 , pp. 527-540
    • Zhu, Q.1    Cai, Y.2    Liu, L.3
  • 36
    • 77952547396 scopus 로고    scopus 로고
    • Design of specific-to-problem kernels and use of kernel weighted k-nearest neighbours for time series modelling
    • Rubio G., Herrera L.J., Pomares H., Rojas I., Guillén A. Design of specific-to-problem kernels and use of kernel weighted k-nearest neighbours for time series modelling. Neurocomputing 2010, 73(10-12):1965-1975.
    • (2010) Neurocomputing , vol.73 , Issue.10-12 , pp. 1965-1975
    • Rubio, G.1    Herrera, L.J.2    Pomares, H.3    Rojas, I.4    Guillén, A.5
  • 38
    • 80051588027 scopus 로고    scopus 로고
    • Ls-svmlab: a matlab/c toolbox for least squares support vector machines
    • Ls-svmlab: a matlab/c toolbox for least squares support vector machines, 2002. http://www.esat.kuleuven.ac.be/sista/lssvmlab.
    • (2002)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.