-
1
-
-
0027453616
-
Model-based Gaussian and non-Gaussian clustering
-
Banfield, J. D., Raftery, A. E.: Model-based Gaussian and non-Gaussian clustering. Biometrics 49, 803-821 (1993).
-
(1993)
Biometrics
, vol.49
, pp. 803-821
-
-
Banfield, J.D.1
Raftery, A.E.2
-
2
-
-
1542742610
-
The masking breakdown point for outlier identification rules
-
Becker, C., Gather, U.: The masking breakdown point for outlier identification rules. J. Am. Stat. Assoc. 94, 947-955 (1999).
-
(1999)
J. Am. Stat. Assoc.
, vol.94
, pp. 947-955
-
-
Becker, C.1
Gather, U.2
-
3
-
-
0000308948
-
Using the classification likelihood to choose the number of clusters
-
Biernacki, C., Govaert, G.: Using the classification likelihood to choose the number of clusters. Comput. Sci. Stat. 29, 451-457 (1997).
-
(1997)
Comput. Sci. Stat.
, vol.29
, pp. 451-457
-
-
Biernacki, C.1
Govaert, G.2
-
4
-
-
0034228914
-
Assesing a mixture model for clustering with the integrated completed likelihood
-
Biernacki, C., Celeux, G., Govaert, G.: Assesing a mixture model for clustering with the integrated completed likelihood. IEEE Trans. Pattern Anal. Mach. Intell. 22, 719-725 (2000).
-
(2000)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.22
, pp. 719-725
-
-
Biernacki, C.1
Celeux, G.2
Govaert, G.3
-
5
-
-
0002344672
-
Large-sample results for optimization-based clustering methods
-
Bryant, P. G.: Large-sample results for optimization-based clustering methods. J. Classif. 8, 31-44 (1991).
-
(1991)
J. Classif.
, vol.8
, pp. 31-44
-
-
Bryant, P.G.1
-
6
-
-
0030289011
-
Probabilistic models in cluster analysis
-
Bock, H.-H.: Probabilistic models in cluster analysis. Comput. Stat. Data Anal. 23, 5-28 (1996).
-
(1996)
Comput. Stat. Data Anal.
, vol.23
, pp. 5-28
-
-
Bock, H.-H.1
-
7
-
-
84972893020
-
A dendrite method for cluster analysis
-
Calinski, R. B., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat. 3, 1-27 (1974).
-
(1974)
Commun. Stat.
, vol.3
, pp. 1-27
-
-
Calinski, R.B.1
Harabasz, J.2
-
8
-
-
0001626339
-
Classification EM algorithm for clustering and two stochastic versions
-
Celeux, G., Govaert, A.: Classification EM algorithm for clustering and two stochastic versions. Comput. Stat. Data Anal. 13, 315-332 (1992a).
-
(1992)
Comput. Stat. Data Anal.
, vol.13
, pp. 315-332
-
-
Celeux, G.1
Govaert, A.2
-
9
-
-
0029305528
-
Gaussian parsimonious clustering models
-
Celeux, G., Govaert, A.: Gaussian parsimonious clustering models. Pattern Recognit. 28, 781-793 (1992b).
-
(1992)
Pattern Recognit.
, vol.28
, pp. 781-793
-
-
Celeux, G.1
Govaert, A.2
-
10
-
-
0037877507
-
Graphical detection of regression outliers and mixtures
-
Helsinki
-
Cook, D.: Graphical detection of regression outliers and mixtures. Proceedings ISI'99. Helsinki (1999).
-
(1999)
Proceedings ISI'99
-
-
Cook, D.1
-
11
-
-
47649122556
-
Robust estimation in the normal mixture model based on robust clustering
-
Cuesta-Albertos, J. A., Matran, C., Mayo-Iscar, A.: Robust estimation in the normal mixture model based on robust clustering. J. R. Stat. Soc., Ser. B 70, 779-802 (2008).
-
(2008)
J. R. Stat. Soc., Ser. B
, vol.70
, pp. 779-802
-
-
Cuesta-Albertos, J.A.1
Matran, C.2
Mayo-Iscar, A.3
-
12
-
-
0032337237
-
Detecting features in spatial point processes with clutter via model-based clustering
-
Dasgupta, A., Raftery, A. E.: Detecting features in spatial point processes with clutter via model-based clustering. J. Am. Stat. Assoc. 93, 294-302 (1998).
-
(1998)
J. Am. Stat. Assoc.
, vol.93
, pp. 294-302
-
-
Dasgupta, A.1
Raftery, A.E.2
-
13
-
-
0001516463
-
Percentage points of a test for clusters
-
Engelman, L., Hartigan, J. A.: Percentage points of a test for clusters. J. Am. Stat. Assoc. 64, 1647-1648 (1969).
-
(1969)
J. Am. Stat. Assoc.
, vol.64
, pp. 1647-1648
-
-
Engelman, L.1
Hartigan, J.A.2
-
16
-
-
34247969087
-
On some invariant criterion for grouping data
-
Friedman, H. P., Rubin, J.: On some invariant criterion for grouping data. J. Am. Stat. Assoc. 63, 1159-1178 (1967).
-
(1967)
J. Am. Stat. Assoc.
, vol.63
, pp. 1159-1178
-
-
Friedman, H.P.1
Rubin, J.2
-
17
-
-
0032269108
-
How many clusters? Which clustering method? Answers via model-based cluster analysis
-
Fraley, C., Raftery, A. E.: How many clusters? Which clustering method? Answers via model-based cluster analysis. Comput. J. 41, 578-588 (1998).
-
(1998)
Comput. J.
, vol.41
, pp. 578-588
-
-
Fraley, C.1
Raftery, A.E.2
-
18
-
-
34147101277
-
Maximum likelihood clustering with outliers
-
K. Jajuga, A. Sokolowski, and H.-H. Bock (Eds.), Berlin: Springer
-
Gallegos, M. T.: Maximum likelihood clustering with outliers. In: Jajuga, K., Sokolowski, A., Bock, H.-H. (eds.) Classification, Clustering and Data Analysis: Recent Advances and Applications, pp. 247-255. Springer, Berlin (2002).
-
(2002)
Classification, Clustering and Data Analysis: Recent Advances and Applications
, pp. 247-255
-
-
Gallegos, M.T.1
-
19
-
-
18444366492
-
A robust method for cluster analysis
-
Gallegos, M. T., Ritter, G.: A robust method for cluster analysis. Ann. Stat. 33, 347-380 (2005).
-
(2005)
Ann. Stat.
, vol.33
, pp. 347-380
-
-
Gallegos, M.T.1
Ritter, G.2
-
20
-
-
76149085499
-
Trimming algorithms for clustering contaminated grouped data and their robustness
-
Gallegos, M. T., Ritter, G.: Trimming algorithms for clustering contaminated grouped data and their robustness. Adv. Data Anal. Classif. 3, 135-167 (2009).
-
(2009)
Adv. Data Anal. Classif.
, vol.3
, pp. 135-167
-
-
Gallegos, M.T.1
Ritter, G.2
-
21
-
-
70549110606
-
Using combinatorial optimization in model-based trimmed clustering with cardinality constraints
-
Gallegos, M. T., Ritter, G.: Using combinatorial optimization in model-based trimmed clustering with cardinality constraints. Comput. Stat. Data Anal. 54, 637-654 (2010).
-
(2010)
Comput. Stat. Data Anal.
, vol.54
, pp. 637-654
-
-
Gallegos, M.T.1
Ritter, G.2
-
22
-
-
19244381376
-
Trimming tools in exploratory data analysis
-
García-Escudero, L. A., Gordaliza, A., Matrán, C.: Trimming tools in exploratory data analysis. J. Comput. Graph. Stat. 12, 434-449 (2003).
-
(2003)
J. Comput. Graph. Stat.
, vol.12
, pp. 434-449
-
-
García-Escudero, L.A.1
Gordaliza, A.2
Matrán, C.3
-
23
-
-
51049119219
-
A general trimming approach to robust cluster analysis
-
García-Escudero, L. A., Gordaliza, A., Matrán, C., Mayo-Iscar, A.: A general trimming approach to robust cluster analysis. Ann. Stat. 36, 1324-1345 (2008).
-
(2008)
Ann. Stat.
, vol.36
, pp. 1324-1345
-
-
García-Escudero, L.A.1
Gordaliza, A.2
Matrán, C.3
Mayo-Iscar, A.4
-
24
-
-
0344513198
-
Outlier detection in the multiple cluster setting using the minimum covariance determinant estimator
-
Hardin, J., Rocke, D.: Outlier detection in the multiple cluster setting using the minimum covariance determinant estimator. Comput. Stat. Data Anal. 44, 625-638 (2004).
-
(2004)
Comput. Stat. Data Anal.
, vol.44
, pp. 625-638
-
-
Hardin, J.1
Rocke, D.2
-
25
-
-
0001354471
-
A constrained formulation of maximum likelihood estimation for normal mixture distributions
-
Hathaway, R. J.: A constrained formulation of maximum likelihood estimation for normal mixture distributions. Ann. Stat. 13, 795-800 (1985).
-
(1985)
Ann. Stat.
, vol.13
, pp. 795-800
-
-
Hathaway, R.J.1
-
26
-
-
0036489051
-
Inconsistency of resampling algorithms for high-breakdown regression estimators and a new algorithm, with discussion
-
Hawkins, D. M., Olive, D. J.: Inconsistency of resampling algorithms for high-breakdown regression estimators and a new algorithm, with discussion. J. Am. Stat. Assoc. 97, 136-159 (2002).
-
(2002)
J. Am. Stat. Assoc.
, vol.97
, pp. 136-159
-
-
Hawkins, D.M.1
Olive, D.J.2
-
27
-
-
24344501318
-
Breakdown points for maximum likelihood-estimators of location-scale mixtures
-
Hennig, C.: Breakdown points for maximum likelihood-estimators of location-scale mixtures. Ann. Stat. 32, 1313-1340 (2004a).
-
(2004)
Ann. Stat.
, vol.32
, pp. 1313-1340
-
-
Hennig, C.1
-
28
-
-
11244342326
-
Asymmetric linear dimension reduction for classification
-
Hennig, C.: Asymmetric linear dimension reduction for classification. J. Comput. Graph. Stat. 13, 930-945 (2004b).
-
(2004)
J. Comput. Graph. Stat.
, vol.13
, pp. 930-945
-
-
Hennig, C.1
-
29
-
-
0037191010
-
Validating visual clusters in large datasets: fixed point clusters of spectral features
-
Hennig, C., Christlieb, N.: Validating visual clusters in large datasets: fixed point clusters of spectral features. Comput. Stat. Data Anal. 40, 723-739 (2002).
-
(2002)
Comput. Stat. Data Anal.
, vol.40
, pp. 723-739
-
-
Hennig, C.1
Christlieb, N.2
-
30
-
-
0002954754
-
Consistent estimation of the order of mixture models
-
Keribin, C.: Consistent estimation of the order of mixture models. Sankhya, Ser. A 62, 49-62 (2000).
-
(2000)
Sankhya, Ser. A
, vol.62
, pp. 49-62
-
-
Keribin, C.1
-
31
-
-
0015113659
-
Practical problems in a method of cluster analysis
-
Marriott, F. H. C.: Practical problems in a method of cluster analysis. Biometrics 27, 501-514 (1971).
-
(1971)
Biometrics
, vol.27
, pp. 501-514
-
-
Marriott, F.H.C.1
-
32
-
-
0023570352
-
On bootstrapping the likelihood ratio test statistic for the number of components in a normal mixture
-
McLachlan, G.: On bootstrapping the likelihood ratio test statistic for the number of components in a normal mixture. Appl. Stat. 37, 318-324 (1987).
-
(1987)
Appl. Stat.
, vol.37
, pp. 318-324
-
-
McLachlan, G.1
-
34
-
-
0001457509
-
Some methods for classification and analysis of multivariate observations
-
McQueen, J.: Some methods for classification and analysis of multivariate observations. In: 5th Berkeley Symposium on Mathematics, Statistics, and Probability, vol. 1, pp. 281-298 (1967).
-
(1967)
In: 5th Berkeley Symposium on Mathematics, Statistics, and Probability
, vol.1
, pp. 281-298
-
-
McQueen, J.1
-
35
-
-
34250115918
-
An examination of procedures for determining the number of clusters in a data set
-
Milligan, G. W., Cooper, M. C.: An examination of procedures for determining the number of clusters in a data set. Psychometrika 50, 159-179 (1985).
-
(1985)
Psychometrika
, vol.50
, pp. 159-179
-
-
Milligan, G.W.1
Cooper, M.C.2
-
36
-
-
33744830827
-
Mixture of generalized linear models and the trimmed likelihood methodology
-
J. Antoch (Ed.), Heidelberg: Physica-Verlag
-
Neykov, N. M., Filzmoser, P., Dimova, R., Neytchev, P. N.: Mixture of generalized linear models and the trimmed likelihood methodology. In: Antoch, J. (ed.) Proceedings in Computational Statistics, pp. 1585-1592. Physica-Verlag, Heidelberg (2004).
-
(2004)
Proceedings in Computational Statistics
, pp. 1585-1592
-
-
Neykov, N.M.1
Filzmoser, P.2
Dimova, R.3
Neytchev, P.N.4
-
37
-
-
34548307049
-
Robust fitting of mixtures using the trimmed likelihood estimator
-
Neykov, N. M., Filzmoser, P., Dimova, R., Neytchev, P.: Robust fitting of mixtures using the trimmed likelihood estimator. Comput. Stat. Data Anal. 52, 299-308 (2007).
-
(2007)
Comput. Stat. Data Anal.
, vol.52
, pp. 299-308
-
-
Neykov, N.M.1
Filzmoser, P.2
Dimova, R.3
Neytchev, P.4
-
38
-
-
34147187402
-
Computational connections between robust multivariate analysis and clustering
-
W. Härdle, B. Rönz (Eds.), Heidelberg: Physica-Verlag
-
Rocke, D. M., Woodruff, D. M.: Computational connections between robust multivariate analysis and clustering. In: Härdle, W., Rönz, B. (eds.) COMPSTAT 2002, Proceedings in Computational Statistics, pp. 255-260. Physica-Verlag, Heidelberg (2002).
-
(2002)
COMPSTAT 2002, Proceedings in Computational Statistics
, pp. 255-260
-
-
Rocke, D.M.1
Woodruff, D.M.2
-
39
-
-
0023453329
-
Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
-
Rousseeuw, P. J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53-65 (1987).
-
(1987)
J. Comput. Appl. Math.
, vol.20
, pp. 53-65
-
-
Rousseeuw, P.J.1
-
40
-
-
0032680362
-
A Fast Algorithm for the Minimum Covariance Determinant Estimator
-
Rousseeuw, P. J., van Driessen, K.: A Fast Algorithm for the Minimum Covariance Determinant Estimator. Technometrics 41, 212-223 (1999).
-
(1999)
Technometrics
, vol.41
, pp. 212-223
-
-
Rousseeuw, P.J.1
van Driessen, K.2
-
41
-
-
0242679438
-
Finding the number of clusters in a data set: an information theoretic approach
-
Sugar, C., James, G.: Finding the number of clusters in a data set: an information theoretic approach. J. Am. Stat. Assoc. 98, 750-763 (2003).
-
(2003)
J. Am. Stat. Assoc.
, vol.98
, pp. 750-763
-
-
Sugar, C.1
James, G.2
-
42
-
-
0002643871
-
Clustering criteria and multivariate normal mixtures
-
Symons, M. J.: Clustering criteria and multivariate normal mixtures. Biometrics 37, 35-43 (1981).
-
(1981)
Biometrics
, vol.37
, pp. 35-43
-
-
Symons, M.J.1
-
44
-
-
27644568314
-
Linear grouping using orthogonal regression
-
van Aelst, S., Wang, X., Zamar, R. H., Zhu, R.: Linear grouping using orthogonal regression. Comput. Stat. Data Anal. 50, 1287-1312 (2006).
-
(2006)
Comput. Stat. Data Anal.
, vol.50
, pp. 1287-1312
-
-
van Aelst, S.1
Wang, X.2
Zamar, R.H.3
Zhu, R.4
-
45
-
-
4444358559
-
Experiments with, and on, algorithms for maximum likelihood clustering
-
Woodruff, D. L., Reiners, T.: Experiments with, and on, algorithms for maximum likelihood clustering. Comput. Stat. Data Anal. 47, 237-253 (2004).
-
(2004)
Comput. Stat. Data Anal.
, vol.47
, pp. 237-253
-
-
Woodruff, D.L.1
Reiners, T.2
-
46
-
-
0012393308
-
Pattern clustering by multivariate analysis
-
Wolfe, J. H.: Pattern clustering by multivariate analysis. Multivar. Behav. Res. 5, 329-350 (1970).
-
(1970)
Multivar. Behav. Res.
, vol.5
, pp. 329-350
-
-
Wolfe, J.H.1
|