메뉴 건너뛰기




Volumn 21, Issue 4, 2011, Pages 585-599

Exploring the number of groups in robust model-based clustering

Author keywords

Heterogeneous clusters; Number of groups; Strength of group assignments; Trimming

Indexed keywords


EID: 80051470112     PISSN: 09603174     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11222-010-9194-z     Document Type: Article
Times cited : (66)

References (46)
  • 1
    • 0027453616 scopus 로고
    • Model-based Gaussian and non-Gaussian clustering
    • Banfield, J. D., Raftery, A. E.: Model-based Gaussian and non-Gaussian clustering. Biometrics 49, 803-821 (1993).
    • (1993) Biometrics , vol.49 , pp. 803-821
    • Banfield, J.D.1    Raftery, A.E.2
  • 2
    • 1542742610 scopus 로고    scopus 로고
    • The masking breakdown point for outlier identification rules
    • Becker, C., Gather, U.: The masking breakdown point for outlier identification rules. J. Am. Stat. Assoc. 94, 947-955 (1999).
    • (1999) J. Am. Stat. Assoc. , vol.94 , pp. 947-955
    • Becker, C.1    Gather, U.2
  • 3
    • 0000308948 scopus 로고    scopus 로고
    • Using the classification likelihood to choose the number of clusters
    • Biernacki, C., Govaert, G.: Using the classification likelihood to choose the number of clusters. Comput. Sci. Stat. 29, 451-457 (1997).
    • (1997) Comput. Sci. Stat. , vol.29 , pp. 451-457
    • Biernacki, C.1    Govaert, G.2
  • 4
    • 0034228914 scopus 로고    scopus 로고
    • Assesing a mixture model for clustering with the integrated completed likelihood
    • Biernacki, C., Celeux, G., Govaert, G.: Assesing a mixture model for clustering with the integrated completed likelihood. IEEE Trans. Pattern Anal. Mach. Intell. 22, 719-725 (2000).
    • (2000) IEEE Trans. Pattern Anal. Mach. Intell. , vol.22 , pp. 719-725
    • Biernacki, C.1    Celeux, G.2    Govaert, G.3
  • 5
    • 0002344672 scopus 로고
    • Large-sample results for optimization-based clustering methods
    • Bryant, P. G.: Large-sample results for optimization-based clustering methods. J. Classif. 8, 31-44 (1991).
    • (1991) J. Classif. , vol.8 , pp. 31-44
    • Bryant, P.G.1
  • 6
    • 0030289011 scopus 로고    scopus 로고
    • Probabilistic models in cluster analysis
    • Bock, H.-H.: Probabilistic models in cluster analysis. Comput. Stat. Data Anal. 23, 5-28 (1996).
    • (1996) Comput. Stat. Data Anal. , vol.23 , pp. 5-28
    • Bock, H.-H.1
  • 7
    • 84972893020 scopus 로고
    • A dendrite method for cluster analysis
    • Calinski, R. B., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat. 3, 1-27 (1974).
    • (1974) Commun. Stat. , vol.3 , pp. 1-27
    • Calinski, R.B.1    Harabasz, J.2
  • 8
    • 0001626339 scopus 로고
    • Classification EM algorithm for clustering and two stochastic versions
    • Celeux, G., Govaert, A.: Classification EM algorithm for clustering and two stochastic versions. Comput. Stat. Data Anal. 13, 315-332 (1992a).
    • (1992) Comput. Stat. Data Anal. , vol.13 , pp. 315-332
    • Celeux, G.1    Govaert, A.2
  • 9
    • 0029305528 scopus 로고
    • Gaussian parsimonious clustering models
    • Celeux, G., Govaert, A.: Gaussian parsimonious clustering models. Pattern Recognit. 28, 781-793 (1992b).
    • (1992) Pattern Recognit. , vol.28 , pp. 781-793
    • Celeux, G.1    Govaert, A.2
  • 10
    • 0037877507 scopus 로고    scopus 로고
    • Graphical detection of regression outliers and mixtures
    • Helsinki
    • Cook, D.: Graphical detection of regression outliers and mixtures. Proceedings ISI'99. Helsinki (1999).
    • (1999) Proceedings ISI'99
    • Cook, D.1
  • 11
    • 47649122556 scopus 로고    scopus 로고
    • Robust estimation in the normal mixture model based on robust clustering
    • Cuesta-Albertos, J. A., Matran, C., Mayo-Iscar, A.: Robust estimation in the normal mixture model based on robust clustering. J. R. Stat. Soc., Ser. B 70, 779-802 (2008).
    • (2008) J. R. Stat. Soc., Ser. B , vol.70 , pp. 779-802
    • Cuesta-Albertos, J.A.1    Matran, C.2    Mayo-Iscar, A.3
  • 12
    • 0032337237 scopus 로고    scopus 로고
    • Detecting features in spatial point processes with clutter via model-based clustering
    • Dasgupta, A., Raftery, A. E.: Detecting features in spatial point processes with clutter via model-based clustering. J. Am. Stat. Assoc. 93, 294-302 (1998).
    • (1998) J. Am. Stat. Assoc. , vol.93 , pp. 294-302
    • Dasgupta, A.1    Raftery, A.E.2
  • 13
    • 0001516463 scopus 로고
    • Percentage points of a test for clusters
    • Engelman, L., Hartigan, J. A.: Percentage points of a test for clusters. J. Am. Stat. Assoc. 64, 1647-1648 (1969).
    • (1969) J. Am. Stat. Assoc. , vol.64 , pp. 1647-1648
    • Engelman, L.1    Hartigan, J.A.2
  • 16
    • 34247969087 scopus 로고
    • On some invariant criterion for grouping data
    • Friedman, H. P., Rubin, J.: On some invariant criterion for grouping data. J. Am. Stat. Assoc. 63, 1159-1178 (1967).
    • (1967) J. Am. Stat. Assoc. , vol.63 , pp. 1159-1178
    • Friedman, H.P.1    Rubin, J.2
  • 17
    • 0032269108 scopus 로고    scopus 로고
    • How many clusters? Which clustering method? Answers via model-based cluster analysis
    • Fraley, C., Raftery, A. E.: How many clusters? Which clustering method? Answers via model-based cluster analysis. Comput. J. 41, 578-588 (1998).
    • (1998) Comput. J. , vol.41 , pp. 578-588
    • Fraley, C.1    Raftery, A.E.2
  • 18
    • 34147101277 scopus 로고    scopus 로고
    • Maximum likelihood clustering with outliers
    • K. Jajuga, A. Sokolowski, and H.-H. Bock (Eds.), Berlin: Springer
    • Gallegos, M. T.: Maximum likelihood clustering with outliers. In: Jajuga, K., Sokolowski, A., Bock, H.-H. (eds.) Classification, Clustering and Data Analysis: Recent Advances and Applications, pp. 247-255. Springer, Berlin (2002).
    • (2002) Classification, Clustering and Data Analysis: Recent Advances and Applications , pp. 247-255
    • Gallegos, M.T.1
  • 19
    • 18444366492 scopus 로고    scopus 로고
    • A robust method for cluster analysis
    • Gallegos, M. T., Ritter, G.: A robust method for cluster analysis. Ann. Stat. 33, 347-380 (2005).
    • (2005) Ann. Stat. , vol.33 , pp. 347-380
    • Gallegos, M.T.1    Ritter, G.2
  • 20
    • 76149085499 scopus 로고    scopus 로고
    • Trimming algorithms for clustering contaminated grouped data and their robustness
    • Gallegos, M. T., Ritter, G.: Trimming algorithms for clustering contaminated grouped data and their robustness. Adv. Data Anal. Classif. 3, 135-167 (2009).
    • (2009) Adv. Data Anal. Classif. , vol.3 , pp. 135-167
    • Gallegos, M.T.1    Ritter, G.2
  • 21
    • 70549110606 scopus 로고    scopus 로고
    • Using combinatorial optimization in model-based trimmed clustering with cardinality constraints
    • Gallegos, M. T., Ritter, G.: Using combinatorial optimization in model-based trimmed clustering with cardinality constraints. Comput. Stat. Data Anal. 54, 637-654 (2010).
    • (2010) Comput. Stat. Data Anal. , vol.54 , pp. 637-654
    • Gallegos, M.T.1    Ritter, G.2
  • 24
    • 0344513198 scopus 로고    scopus 로고
    • Outlier detection in the multiple cluster setting using the minimum covariance determinant estimator
    • Hardin, J., Rocke, D.: Outlier detection in the multiple cluster setting using the minimum covariance determinant estimator. Comput. Stat. Data Anal. 44, 625-638 (2004).
    • (2004) Comput. Stat. Data Anal. , vol.44 , pp. 625-638
    • Hardin, J.1    Rocke, D.2
  • 25
    • 0001354471 scopus 로고
    • A constrained formulation of maximum likelihood estimation for normal mixture distributions
    • Hathaway, R. J.: A constrained formulation of maximum likelihood estimation for normal mixture distributions. Ann. Stat. 13, 795-800 (1985).
    • (1985) Ann. Stat. , vol.13 , pp. 795-800
    • Hathaway, R.J.1
  • 26
    • 0036489051 scopus 로고    scopus 로고
    • Inconsistency of resampling algorithms for high-breakdown regression estimators and a new algorithm, with discussion
    • Hawkins, D. M., Olive, D. J.: Inconsistency of resampling algorithms for high-breakdown regression estimators and a new algorithm, with discussion. J. Am. Stat. Assoc. 97, 136-159 (2002).
    • (2002) J. Am. Stat. Assoc. , vol.97 , pp. 136-159
    • Hawkins, D.M.1    Olive, D.J.2
  • 27
    • 24344501318 scopus 로고    scopus 로고
    • Breakdown points for maximum likelihood-estimators of location-scale mixtures
    • Hennig, C.: Breakdown points for maximum likelihood-estimators of location-scale mixtures. Ann. Stat. 32, 1313-1340 (2004a).
    • (2004) Ann. Stat. , vol.32 , pp. 1313-1340
    • Hennig, C.1
  • 28
    • 11244342326 scopus 로고    scopus 로고
    • Asymmetric linear dimension reduction for classification
    • Hennig, C.: Asymmetric linear dimension reduction for classification. J. Comput. Graph. Stat. 13, 930-945 (2004b).
    • (2004) J. Comput. Graph. Stat. , vol.13 , pp. 930-945
    • Hennig, C.1
  • 29
    • 0037191010 scopus 로고    scopus 로고
    • Validating visual clusters in large datasets: fixed point clusters of spectral features
    • Hennig, C., Christlieb, N.: Validating visual clusters in large datasets: fixed point clusters of spectral features. Comput. Stat. Data Anal. 40, 723-739 (2002).
    • (2002) Comput. Stat. Data Anal. , vol.40 , pp. 723-739
    • Hennig, C.1    Christlieb, N.2
  • 30
    • 0002954754 scopus 로고    scopus 로고
    • Consistent estimation of the order of mixture models
    • Keribin, C.: Consistent estimation of the order of mixture models. Sankhya, Ser. A 62, 49-62 (2000).
    • (2000) Sankhya, Ser. A , vol.62 , pp. 49-62
    • Keribin, C.1
  • 31
    • 0015113659 scopus 로고
    • Practical problems in a method of cluster analysis
    • Marriott, F. H. C.: Practical problems in a method of cluster analysis. Biometrics 27, 501-514 (1971).
    • (1971) Biometrics , vol.27 , pp. 501-514
    • Marriott, F.H.C.1
  • 32
    • 0023570352 scopus 로고
    • On bootstrapping the likelihood ratio test statistic for the number of components in a normal mixture
    • McLachlan, G.: On bootstrapping the likelihood ratio test statistic for the number of components in a normal mixture. Appl. Stat. 37, 318-324 (1987).
    • (1987) Appl. Stat. , vol.37 , pp. 318-324
    • McLachlan, G.1
  • 35
    • 34250115918 scopus 로고
    • An examination of procedures for determining the number of clusters in a data set
    • Milligan, G. W., Cooper, M. C.: An examination of procedures for determining the number of clusters in a data set. Psychometrika 50, 159-179 (1985).
    • (1985) Psychometrika , vol.50 , pp. 159-179
    • Milligan, G.W.1    Cooper, M.C.2
  • 36
    • 33744830827 scopus 로고    scopus 로고
    • Mixture of generalized linear models and the trimmed likelihood methodology
    • J. Antoch (Ed.), Heidelberg: Physica-Verlag
    • Neykov, N. M., Filzmoser, P., Dimova, R., Neytchev, P. N.: Mixture of generalized linear models and the trimmed likelihood methodology. In: Antoch, J. (ed.) Proceedings in Computational Statistics, pp. 1585-1592. Physica-Verlag, Heidelberg (2004).
    • (2004) Proceedings in Computational Statistics , pp. 1585-1592
    • Neykov, N.M.1    Filzmoser, P.2    Dimova, R.3    Neytchev, P.N.4
  • 38
    • 34147187402 scopus 로고    scopus 로고
    • Computational connections between robust multivariate analysis and clustering
    • W. Härdle, B. Rönz (Eds.), Heidelberg: Physica-Verlag
    • Rocke, D. M., Woodruff, D. M.: Computational connections between robust multivariate analysis and clustering. In: Härdle, W., Rönz, B. (eds.) COMPSTAT 2002, Proceedings in Computational Statistics, pp. 255-260. Physica-Verlag, Heidelberg (2002).
    • (2002) COMPSTAT 2002, Proceedings in Computational Statistics , pp. 255-260
    • Rocke, D.M.1    Woodruff, D.M.2
  • 39
    • 0023453329 scopus 로고
    • Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
    • Rousseeuw, P. J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53-65 (1987).
    • (1987) J. Comput. Appl. Math. , vol.20 , pp. 53-65
    • Rousseeuw, P.J.1
  • 40
    • 0032680362 scopus 로고    scopus 로고
    • A Fast Algorithm for the Minimum Covariance Determinant Estimator
    • Rousseeuw, P. J., van Driessen, K.: A Fast Algorithm for the Minimum Covariance Determinant Estimator. Technometrics 41, 212-223 (1999).
    • (1999) Technometrics , vol.41 , pp. 212-223
    • Rousseeuw, P.J.1    van Driessen, K.2
  • 41
    • 0242679438 scopus 로고    scopus 로고
    • Finding the number of clusters in a data set: an information theoretic approach
    • Sugar, C., James, G.: Finding the number of clusters in a data set: an information theoretic approach. J. Am. Stat. Assoc. 98, 750-763 (2003).
    • (2003) J. Am. Stat. Assoc. , vol.98 , pp. 750-763
    • Sugar, C.1    James, G.2
  • 42
    • 0002643871 scopus 로고
    • Clustering criteria and multivariate normal mixtures
    • Symons, M. J.: Clustering criteria and multivariate normal mixtures. Biometrics 37, 35-43 (1981).
    • (1981) Biometrics , vol.37 , pp. 35-43
    • Symons, M.J.1
  • 45
    • 4444358559 scopus 로고    scopus 로고
    • Experiments with, and on, algorithms for maximum likelihood clustering
    • Woodruff, D. L., Reiners, T.: Experiments with, and on, algorithms for maximum likelihood clustering. Comput. Stat. Data Anal. 47, 237-253 (2004).
    • (2004) Comput. Stat. Data Anal. , vol.47 , pp. 237-253
    • Woodruff, D.L.1    Reiners, T.2
  • 46
    • 0012393308 scopus 로고
    • Pattern clustering by multivariate analysis
    • Wolfe, J. H.: Pattern clustering by multivariate analysis. Multivar. Behav. Res. 5, 329-350 (1970).
    • (1970) Multivar. Behav. Res. , vol.5 , pp. 329-350
    • Wolfe, J.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.