메뉴 건너뛰기




Volumn 28, Issue 2, 2011, Pages 365-393

Statistical semantics for enhancing document clustering

Author keywords

Document clustering; Semantic similarity; Statistical semantics; Term term correlations

Indexed keywords

CLUSTER ANALYSIS; INFORMATION RETRIEVAL; NATURAL LANGUAGE PROCESSING SYSTEMS; SEMANTICS; VECTOR SPACES;

EID: 79961211393     PISSN: 02191377     EISSN: 02193116     Source Type: Journal    
DOI: 10.1007/s10115-010-0367-z     Document Type: Article
Times cited : (29)

References (41)
  • 1
    • 30344483178 scopus 로고    scopus 로고
    • Document clustering using locality preserving indexing
    • Cai D, He X, Han J (2005) Document clustering using locality preserving indexing. IEEE Trans Knowl Data Eng 17(12): 1624-1637.
    • (2005) IEEE Trans Knowl Data Eng , vol.17 , Issue.12 , pp. 1624-1637
    • Cai, D.1    He, X.2    Han, J.3
  • 6
    • 0242652097 scopus 로고    scopus 로고
    • Feature selection and document clustering
    • M. Berry (Ed.), New York: Springer
    • Dhillon I, Kogan J, Nicholas C (2003) Feature selection and document clustering. In: Berry M (eds) Survey of Text Mining. Springer, New York, pp 73-100.
    • (2003) Survey of Text Mining , pp. 73-100
    • Dhillon, I.1    Kogan, J.2    Nicholas, C.3
  • 7
    • 0034824884 scopus 로고    scopus 로고
    • Concept decompositions for large sparse text data using clustering
    • Dhillon IS, Modha DS (2001) Concept decompositions for large sparse text data using clustering. Mach Learn 42(1/2): 143-175.
    • (2001) Mach Learn , vol.42 , Issue.1-2 , pp. 143-175
    • Dhillon, I.S.1    Modha, D.S.2
  • 10
    • 33751115359 scopus 로고    scopus 로고
    • Fast Monte Carlo algorithms for matrices I: approximating matrix multiplication
    • Drineas P, Kannan R, Mahoney M (2007) Fast Monte Carlo algorithms for matrices I: approximating matrix multiplication. SIAM J Comput 36(1): 132-157.
    • (2007) SIAM J Comput , vol.36 , Issue.1 , pp. 132-157
    • Drineas, P.1    Kannan, R.2    Mahoney, M.3
  • 14
    • 0020778239 scopus 로고
    • Statistical semantics: analysis of the potential performance of keyword information systems
    • Furnas G, Landauer T, Gomez L, Dumais S (1983) Statistical semantics: analysis of the potential performance of keyword information systems. Bell Syst Tech J 62(6): 1753-1806.
    • (1983) Bell Syst Tech J , vol.62 , Issue.6 , pp. 1753-1806
    • Furnas, G.1    Landauer, T.2    Gomez, L.3    Dumais, S.4
  • 17
    • 0037191696 scopus 로고    scopus 로고
    • Web document clustering using hyperlink structures
    • He X, Zha H, Ding C, Simon H (2002) Web document clustering using hyperlink structures. Comput Stat Data Anal 41(1): 19-45.
    • (2002) Comput Stat Data Anal , vol.41 , Issue.1 , pp. 19-45
    • He, X.1    Zha, H.2    Ding, C.3    Simon, H.4
  • 22
    • 77957556167 scopus 로고    scopus 로고
    • Knowledge-based vector space model for text clustering
    • Jing L, Ng M, Huang J (2010) Knowledge-based vector space model for text clustering. Knowl Inf Syst 25: 35-55.
    • (2010) Knowl Inf Syst , vol.25 , pp. 35-55
    • Jing, L.1    Ng, M.2    Huang, J.3
  • 24
    • 0038163983 scopus 로고    scopus 로고
    • CLUTO-a clustering toolkit
    • University of Minnesota, Department of Computer Science, Minnesota, MN, USA
    • Karypis G (2003) CLUTO-a clustering toolkit. Technical Report #02-017, University of Minnesota, Department of Computer Science, Minnesota, MN, USA.
    • (2003) Technical Report #02-017
    • Karypis, G.1
  • 25
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • Lee D, Seung H (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401: 788-791.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.1    Seung, H.2
  • 27
    • 9444274777 scopus 로고    scopus 로고
    • Comparing clusterings by the variation of information
    • Springer, Berlin
    • Meila M (2003) Comparing clusterings by the variation of information. In: Learning theory and Kernel Machines. Springer, Berlin, pp 173-187.
    • (2003) Learning theory and Kernel Machines , pp. 173-187
    • Meila, M.1
  • 28
    • 84976702763 scopus 로고
    • WordNet: a lexical database for English
    • Miller GA (1995) WordNet: a lexical database for English. Commun ACM 38(11): 39-41.
    • (1995) Commun ACM , vol.38 , Issue.11 , pp. 39-41
    • Miller, G.A.1
  • 30
    • 0016572913 scopus 로고
    • A vector space model for automatic indexing
    • Salton G, Wong A, Yang CS (1975) A vector space model for automatic indexing. Commun ACM 18(11): 613-620.
    • (1975) Commun ACM , vol.18 , Issue.11 , pp. 613-620
    • Salton, G.1    Wong, A.2    Yang, C.S.3
  • 35
    • 34548583274 scopus 로고    scopus 로고
    • A tutorial on spectral clustering
    • von Luxburg U (2007) A tutorial on spectral clustering. Stat Comput 17(4): 395-416.
    • (2007) Stat Comput , vol.17 , Issue.4 , pp. 395-416
    • von Luxburg, U.1
  • 36
    • 67349109407 scopus 로고    scopus 로고
    • Using wikipedia knowledge to improve text classification
    • Wang P, Hu J, Zeng H, Chen Z (2009) Using wikipedia knowledge to improve text classification. Knowl Inf Syst 19(3): 265-281.
    • (2009) Knowl Inf Syst , vol.19 , Issue.3 , pp. 265-281
    • Wang, P.1    Hu, J.2    Zeng, H.3    Chen, Z.4
  • 40
    • 3543085722 scopus 로고    scopus 로고
    • Empirical and theoretical comparisons of selected criterion functions for document clustering
    • Zhao Y, Karypis G (2004) Empirical and theoretical comparisons of selected criterion functions for document clustering. Mach Learn 55(3): 311-331.
    • (2004) Mach Learn , vol.55 , Issue.3 , pp. 311-331
    • Zhao, Y.1    Karypis, G.2
  • 41
    • 24044537630 scopus 로고    scopus 로고
    • Hierarchical clustering algorithms for document datasets
    • Zhao Y, Karypis G (2005) Hierarchical clustering algorithms for document datasets. Data Min Knowl Discov 10(2): 141-168.
    • (2005) Data Min Knowl Discov , vol.10 , Issue.2 , pp. 141-168
    • Zhao, Y.1    Karypis, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.