메뉴 건너뛰기




Volumn 46, Issue 2, 2010, Pages 180-192

Improving document clustering in a learned concept space

Author keywords

Aspect models; Concept learning; Document clustering

Indexed keywords

ASPECT MODEL; BAG OF WORDS; CLUSTER DOCUMENTS; CONCEPT LEARNING; CONCEPT SPACE; DATA SETS; DIMENSIONALITY REDUCTION TECHNIQUES; DOCUMENT CLUSTERING; DOCUMENT COLLECTION; EM ALGORITHMS; EXTENDED VERSIONS; HIGH-DIMENSIONAL; LATENT VARIABLE; MIXTURE MODEL; MULTINOMIALS; NEWSGROUPS; PLSA MODEL; PROBABILISTIC LATENT SEMANTIC ANALYSIS; REUTERS; REUTERS-21578; TEXT REPRESENTATION;

EID: 76049124409     PISSN: 03064573     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ipm.2009.09.007     Document Type: Article
Times cited : (21)

References (25)
  • 1
    • 0036989516 scopus 로고    scopus 로고
    • The use of unlabeled data to improve supervised learning for text summarization
    • ACM SIGIR pp
    • Amini, M.-R., & Gallinari, P. (2002). The use of unlabeled data to improve supervised learning for text summarization. In Proceedings of the25 th annual international ACM SIGIR (pp. 105-112).
    • (2002) Proceedings of the25 th annual international , pp. 105-112
    • Amini, M.-R.1    Gallinari, P.2
  • 3
    • 0035789317 scopus 로고    scopus 로고
    • Random projection in dimensionality reduction: Applications to image and text data
    • Bingham, E., & Mannila, H. (2001). Random projection in dimensionality reduction: Applications to image and text data. In Proceedings of the7 th ACM SIGKDD (pp. 245-250).
    • (2001) Proceedings of the7 th ACM SIGKDD , pp. 245-250
    • Bingham, E.1    Mannila, H.2
  • 5
    • 0001626339 scopus 로고
    • A classification em algorithm for clustering and two stochastic versions
    • Celeux G., and Govaert G. A classification em algorithm for clustering and two stochastic versions. Computational Statistics and Data Analysis 14 3 (1992) 315-332
    • (1992) Computational Statistics and Data Analysis , vol.14 , Issue.3 , pp. 315-332
    • Celeux, G.1    Govaert, G.2
  • 10
    • 0034824884 scopus 로고    scopus 로고
    • Concept decompositions for large sparse text data using clustering
    • Dhillon I.S., and Modha D.S. Concept decompositions for large sparse text data using clustering. Machine Learning 42 1/2 (2001) 143-175
    • (2001) Machine Learning , vol.42 , Issue.1-2 , pp. 143-175
    • Dhillon, I.S.1    Modha, D.S.2
  • 16
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • Lee D.D., and Seung H. Learning the parts of objects by non-negative matrix factorization. Nature 401 6755 (1999) 788-791
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.D.1    Seung, H.2
  • 22
    • 0036993190 scopus 로고    scopus 로고
    • Unsupervised document classification using sequential information maximization
    • ACM SIGIR pp
    • Slonim, N., & Tishby, N. (2002). Unsupervised document classification using sequential information maximization. In Proceedings of the25 th annual international ACM SIGIR (pp. 129-136).
    • (2002) Proceedings of the25 th annual international , pp. 129-136
    • Slonim, N.1    Tishby, N.2
  • 23
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles - A knowledge reuse framework for combining multiple partitions
    • Strehl A., and Ghosh J. Cluster ensembles - A knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research 3 (2002) 583-617
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 24
    • 85015279695 scopus 로고    scopus 로고
    • Cluster-based language models for distributed retrieval
    • ACM SIGIR pp
    • Xu, J., & Croft, W. (1999). Cluster-based language models for distributed retrieval. In Proceedings of the22 nd annual international ACM SIGIR (pp. 254-261).
    • (1999) Proceedings of the22 nd annual international , pp. 254-261
    • Xu, J.1    Croft, W.2
  • 25
    • 1542347778 scopus 로고    scopus 로고
    • Document clustering based on non-negative matrix factorization
    • ACM SIGIR pp
    • Xu, W., Liu, X., & Gong, Y. (2003). Document clustering based on non-negative matrix factorization. In Proceedings of the26 th annual international ACM SIGIR (pp. 267-273).
    • (2003) Proceedings of the26 th annual international , pp. 267-273
    • Xu, W.1    Liu, X.2    Gong, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.