-
1
-
-
0029840285
-
Molecular and cellular aspects of the glucagon receptor: role in diabetes and metabolism.
-
Burcelin R, Katz EB, Charron MJ. Molecular and cellular aspects of the glucagon receptor: role in diabetes and metabolism. Diabetes Metab 1996; 22: 373-396.
-
(1996)
Diabetes Metab
, vol.22
, pp. 373-396
-
-
Burcelin, R.1
Katz, E.B.2
Charron, M.J.3
-
2
-
-
0029035354
-
Glucagon and its family revisited.
-
Lefebvre PJ. Glucagon and its family revisited. Diabetes Care 1995; 18: 715-730.
-
(1995)
Diabetes Care
, vol.18
, pp. 715-730
-
-
Lefebvre, P.J.1
-
3
-
-
0028294866
-
Proglucagon is processed to glucagon by prohormone convertase PC2 in alpha TC1-6 cells.
-
Rouille Y, Westermark G, Martin SK, Steiner DF. Proglucagon is processed to glucagon by prohormone convertase PC2 in alpha TC1-6 cells. Proc Natl Acad Sci USA 1994; 8: 3242-3246.
-
(1994)
Proc Natl Acad Sci USA
, vol.8
, pp. 3242-3246
-
-
Rouille, Y.1
Westermark, G.2
Martin, S.K.3
Steiner, D.F.4
-
4
-
-
63449087896
-
Insulin signaling in alpha cells modulates glucagon secretion in vivo.
-
Kawamori D, Kurpad AJ, Hu J et al. Insulin signaling in alpha cells modulates glucagon secretion in vivo. Cell Metab 2009; 4: 350-361.
-
(2009)
Cell Metab
, vol.4
, pp. 350-361
-
-
Kawamori, D.1
Kurpad, A.J.2
Hu, J.3
-
5
-
-
20044394745
-
Glucose or insulin, but not zinc ions, inhibit glucagon secretion from mouse pancreatic alpha-cells.
-
Ravier MA, Rutter GA. Glucose or insulin, but not zinc ions, inhibit glucagon secretion from mouse pancreatic alpha-cells. Diabetes 2005; 6: 1789-1797.
-
(2005)
Diabetes
, vol.6
, pp. 1789-1797
-
-
Ravier, M.A.1
Rutter, G.A.2
-
6
-
-
34047099750
-
Zinc, not insulin, regulates the rat alpha-cell response to hypoglycemia in vivo.
-
Zhou H, Zhang T, Harmon JS, Bryan J, Robertson RP. Zinc, not insulin, regulates the rat alpha-cell response to hypoglycemia in vivo. Diabetes 2007; 4: 1107-1112.
-
(2007)
Diabetes
, vol.4
, pp. 1107-1112
-
-
Zhou, H.1
Zhang, T.2
Harmon, J.S.3
Bryan, J.4
Robertson, R.P.5
-
7
-
-
63249127193
-
Somatostatin secreted by islet delta-cells fulfills multiple roles as a paracrine regulator of islet function.
-
Hauge-Evans AC, King AJ, Carmignac D et al. Somatostatin secreted by islet delta-cells fulfills multiple roles as a paracrine regulator of islet function. Diabetes 2009; 2: 403-411.
-
(2009)
Diabetes
, vol.2
, pp. 403-411
-
-
Hauge-Evans, A.C.1
King, A.J.2
Carmignac, D.3
-
8
-
-
0141483035
-
Hypoglycemia, defective islet glucagon secretion, but normal islet mass in mice with a disruption of the gastrin gene.
-
Boushey RP, Abadir A, Flamez D et al. Hypoglycemia, defective islet glucagon secretion, but normal islet mass in mice with a disruption of the gastrin gene. Gastroenterology 2003; 4: 1164-1174.
-
(2003)
Gastroenterology
, vol.4
, pp. 1164-1174
-
-
Boushey, R.P.1
Abadir, A.2
Flamez, D.3
-
9
-
-
33749347851
-
Paradoxical stimulation of glucagon secretion by high glucose concentrations.
-
Salehi A, Vieira E, Gylfe E. Paradoxical stimulation of glucagon secretion by high glucose concentrations. Diabetes 2006; 8: 2318-2323.
-
(2006)
Diabetes
, vol.8
, pp. 2318-2323
-
-
Salehi, A.1
Vieira, E.2
Gylfe, E.3
-
10
-
-
0021968921
-
Rat pancreas contains the proglucagon(64-69) fragment and arginine stimulates its release.
-
Yanaihara C, Matsumoto T, Kadowaki M, Iguchi K, Yanaihara N. Rat pancreas contains the proglucagon(64-69) fragment and arginine stimulates its release. FEBS Lett 1985; 2: 307-310.
-
(1985)
FEBS Lett
, vol.2
, pp. 307-310
-
-
Yanaihara, C.1
Matsumoto, T.2
Kadowaki, M.3
Iguchi, K.4
Yanaihara, N.5
-
11
-
-
55649108863
-
Glucagon-like peptide-1, but not glucose-dependent insulinotropic peptide, inhibits glucagon secretion via somatostatin (receptor subtype 2) in the perfused rat pancreas.
-
de Heer J, Rasmussen C, Coy DH, Holst JJ. Glucagon-like peptide-1, but not glucose-dependent insulinotropic peptide, inhibits glucagon secretion via somatostatin (receptor subtype 2) in the perfused rat pancreas. Diabetologia 2008; 12: 2263-2270.
-
(2008)
Diabetologia
, vol.12
, pp. 2263-2270
-
-
de Heer, J.1
Rasmussen, C.2
Coy, D.H.3
Holst, J.J.4
-
12
-
-
0033837052
-
Tolbutamide stimulates exocytosis of glucagon by inhibition of a mitochondrial-like ATP-sensitive K+ (KATP) conductance in rat pancreatic A-cells.
-
Hoy M, Olsen HL, Bokvist K et al. Tolbutamide stimulates exocytosis of glucagon by inhibition of a mitochondrial-like ATP-sensitive K+ (KATP) conductance in rat pancreatic A-cells. J Physiol 2000; 527: 109-120.
-
(2000)
J Physiol
, vol.527
, pp. 109-120
-
-
Hoy, M.1
Olsen, H.L.2
Bokvist, K.3
-
13
-
-
0028801240
-
Cloning and sequence analysis of the murine glucagon receptor-encoding gene.
-
Burcelin R, Li J, Charron MJ. Cloning and sequence analysis of the murine glucagon receptor-encoding gene. Gene 1995; 164: 305-310.
-
(1995)
Gene
, vol.164
, pp. 305-310
-
-
Burcelin, R.1
Li, J.2
Charron, M.J.3
-
14
-
-
0035964193
-
Glucagon receptor activates extracellular signal-regulated protein kinase 1/2 via cAMP-dependent protein kinase.
-
Jiang Y, Cypess AM, Muse ED et al. Glucagon receptor activates extracellular signal-regulated protein kinase 1/2 via cAMP-dependent protein kinase. Proc Natl Acad Sci USA 2001; 98: 10102-10107.
-
(2001)
Proc Natl Acad Sci USA
, vol.98
, pp. 10102-10107
-
-
Jiang, Y.1
Cypess, A.M.2
Muse, E.D.3
-
15
-
-
77957556136
-
Glucagon and lipid interactions in the regulation of hepatic AMPK signaling and expression of PPARalpha and FGF21 transcripts in vivo.
-
Berglund ED, Kang L, Lee-Young RS et al. Glucagon and lipid interactions in the regulation of hepatic AMPK signaling and expression of PPARalpha and FGF21 transcripts in vivo. Am J Physiol Endocrinol Metab 2010; 4: E607-E614.
-
(2010)
Am J Physiol Endocrinol Metab
, vol.4
-
-
Berglund, E.D.1
Kang, L.2
Lee-Young, R.S.3
-
17
-
-
69249208511
-
Differential expression of glucagon and glucagon-like peptide 1 receptors in mouse pancreatic alpha and beta cells in two models of alpha cell hyperplasia.
-
Kedees MH, Grigoryan M, Guz Y, Teitelman G. Differential expression of glucagon and glucagon-like peptide 1 receptors in mouse pancreatic alpha and beta cells in two models of alpha cell hyperplasia. Mol Cell Endocrinol 2009; 311: 69-76.
-
(2009)
Mol Cell Endocrinol
, vol.311
, pp. 69-76
-
-
Kedees, M.H.1
Grigoryan, M.2
Guz, Y.3
Teitelman, G.4
-
18
-
-
0029019227
-
Regulation of glucagon receptor mRNA in cultured primary rat hepatocytes by glucose and cAMP.
-
Abrahamsen N, Lundgren K, Nishimura E. Regulation of glucagon receptor mRNA in cultured primary rat hepatocytes by glucose and cAMP. J Biol Chem 1995; 26: 15853-15857.
-
(1995)
J Biol Chem
, vol.26
, pp. 15853-15857
-
-
Abrahamsen, N.1
Lundgren, K.2
Nishimura, E.3
-
19
-
-
0035847312
-
Metabolism of glucagon by dipeptidyl peptidase IV (CD26).
-
Pospisilik JA, Hinke SA, Pederson RA et al. Metabolism of glucagon by dipeptidyl peptidase IV (CD26). Regul Pept 2001; 3: 133-141.
-
(2001)
Regul Pept
, vol.3
, pp. 133-141
-
-
Pospisilik, J.A.1
Hinke, S.A.2
Pederson, R.A.3
-
20
-
-
0029111540
-
Characterisation of the processing by human neutral endopeptidase 24.11 of GLP-1(7-36) amide and comparison of the substrate specificity of the enzyme for other glucagon-like peptides.
-
Hupe-Sodmann K, McGregor GP, Bridenbaugh R et al. Characterisation of the processing by human neutral endopeptidase 24.11 of GLP-1(7-36) amide and comparison of the substrate specificity of the enzyme for other glucagon-like peptides. Regul Pept 1995; 3: 149-156.
-
(1995)
Regul Pept
, vol.3
, pp. 149-156
-
-
Hupe-Sodmann, K.1
McGregor, G.P.2
Bridenbaugh, R.3
-
21
-
-
79961201577
-
-
Wilkins L-W, ed. Joslin's Diabetes Mellitus, 14th edn. Williams & Wilkins, MA, USA.
-
Kahn CR. Elliot Proctor Joslin. In: Wilkins L-W, ed. Joslin's Diabetes Mellitus, 14th edn. Williams & Wilkins, MA, USA 2005; 183.
-
(2005)
Elliot Proctor Joslin.
, pp. 183
-
-
Kahn, C.R.1
-
22
-
-
15444339427
-
Obesity, diabetes and the central nervous system.
-
Porte D Jr, Seeley RJ, Woods SC, Baskin DG, Figlewicz DP, Schwartz MW. Obesity, diabetes and the central nervous system. Diabetologia 1998; 41: 863-881.
-
(1998)
Diabetologia
, vol.41
, pp. 863-881
-
-
Porte, D.1
Seeley, R.J.2
Woods, S.C.3
Baskin, D.G.4
Figlewicz, D.P.5
Schwartz, M.W.6
-
23
-
-
0015887191
-
Hypolipemic action of glucagon in experimental endogenous lipemia in the rat.
-
Eaton RP. Hypolipemic action of glucagon in experimental endogenous lipemia in the rat. J Lipid Res 1973; 3: 312-318.
-
(1973)
J Lipid Res
, vol.3
, pp. 312-318
-
-
Eaton, R.P.1
-
24
-
-
54849431792
-
The glucagon receptor is required for the adaptive metabolic response to fasting.
-
Longuet C, Sinclair EM, Maida A et al. The glucagon receptor is required for the adaptive metabolic response to fasting. Cell Metab 2008; 5: 359-571.
-
(2008)
Cell Metab
, vol.5
, pp. 359-571
-
-
Longuet, C.1
Sinclair, E.M.2
Maida, A.3
-
25
-
-
0037417984
-
Lower blood glucose, hyperglucagonemia, and pancreatic alpha cell hyperplasia in glucagon receptor knockout mice.
-
Gelling RW, Du XQ, Dichmann DS et al. Lower blood glucose, hyperglucagonemia, and pancreatic alpha cell hyperplasia in glucagon receptor knockout mice. PNAS USA 2003; 3: 1438-1443.
-
(2003)
PNAS USA
, vol.3
, pp. 1438-1443
-
-
Gelling, R.W.1
Du, X.Q.2
Dichmann, D.S.3
-
26
-
-
33747615019
-
Ablation of the glucagon receptor gene increases fetal lethality and produces alterations in islet development and maturation.
-
Vuguin PM, Kedees MH, Cui L et al. Ablation of the glucagon receptor gene increases fetal lethality and produces alterations in islet development and maturation. Endocrinology 2006; 9: 3995-4006.
-
(2006)
Endocrinology
, vol.9
, pp. 3995-4006
-
-
Vuguin, P.M.1
Kedees, M.H.2
Cui, L.3
-
27
-
-
0002923914
-
Development of the embryonic pancreas.
-
Steiner DF, Frenkel N, eds. Washington, DC: American Physiological Society
-
Pictet R, Rutter WJ. Development of the embryonic pancreas. In: Steiner DF, Frenkel N, eds. Handbook of Physiology. Washington, DC: American Physiological Society, 1972; 25-66.
-
(1972)
Handbook of Physiology.
, pp. 25-66
-
-
Pictet, R.1
Rutter, W.J.2
-
28
-
-
29244449332
-
Dietary and genetic control of glucose transporter 2 glycosylation promotes insulin secretion in suppressing diabetes.
-
Ohtsubo K, Takamatsu S, Minowa MT, Yoshida A, Takeuchi M, Marth JD. Dietary and genetic control of glucose transporter 2 glycosylation promotes insulin secretion in suppressing diabetes. Cell 2005; 7: 1307-1321.
-
(2005)
Cell
, vol.7
, pp. 1307-1321
-
-
Ohtsubo, K.1
Takamatsu, S.2
Minowa, M.T.3
Yoshida, A.4
Takeuchi, M.5
Marth, J.D.6
-
29
-
-
0035816695
-
Pdx1 level defines pancreatic gene expression pattern and cell lineage differentiation.
-
Wang H, Maechler P, Ritz-Laser B et al. Pdx1 level defines pancreatic gene expression pattern and cell lineage differentiation. J Biol Chem 2001; 27: 25279-25286.
-
(2001)
J Biol Chem
, vol.27
, pp. 25279-25286
-
-
Wang, H.1
Maechler, P.2
Ritz-Laser, B.3
-
30
-
-
0032525981
-
Beta-cell-specific inactivation of the mouse Ipf1/Pdx1 gene results in loss of the beta-cell phenotype and maturity onset diabetes.
-
Ahlgren U, Jonsson J, Jonsson L, Simu K, Edlund H. Beta-cell-specific inactivation of the mouse Ipf1/Pdx1 gene results in loss of the beta-cell phenotype and maturity onset diabetes. Genes Dev 1998; 12: 1763-1768.
-
(1998)
Genes Dev
, vol.12
, pp. 1763-1768
-
-
Ahlgren, U.1
Jonsson, J.2
Jonsson, L.3
Simu, K.4
Edlund, H.5
-
31
-
-
0034463097
-
PDX-1 and cell-cell contact act in synergy to promote delta-cell development in a human pancreatic endocrine precursor cell line.
-
Itkin-Ansari P, Demeterco C, Bossie S et al. PDX-1 and cell-cell contact act in synergy to promote delta-cell development in a human pancreatic endocrine precursor cell line. Mol Endocrinol 2000; 6: 814-822.
-
(2000)
Mol Endocrinol
, vol.6
, pp. 814-822
-
-
Itkin-Ansari, P.1
Demeterco, C.2
Bossie, S.3
-
32
-
-
0017290221
-
The neural crest and the origin of the insulin-producing and other gastrointestinal hormone producing cells.
-
Pictet RL, Rall LB, Phelps P, Rutter WJ. The neural crest and the origin of the insulin-producing and other gastrointestinal hormone producing cells. Science 1976: 4223: 191-192.
-
(1976)
Science
, vol.4223
, pp. 191-192
-
-
Pictet, R.L.1
Rall, L.B.2
Phelps, P.3
Rutter, W.J.4
-
33
-
-
0002923914
-
Development of the embryonic pancreas.
-
Steiner DF, ed., Washington, DC: American Physiological Society
-
Pictet RL, Rutter W. Development of the embryonic pancreas. Steiner DF, ed. Handbook of Physiology, Section 7: Endocrinology, vol. 1. Washington, DC: American Physiological Society, 1972; 25-66.
-
(1972)
Handbook of Physiology, Section 7: Endocrinology
, vol.1
, pp. 25-66
-
-
Pictet, R.L.1
Rutter, W.2
-
34
-
-
38349047613
-
Novel effectors of directed and Ngn3-mediated differentiation of mouse embryonic stem cells into endocrine pancreas progenitors.
-
Serafimidis I, Rakatzi I, Episkopou V, Gouti M, Gavalas A. Novel effectors of directed and Ngn3-mediated differentiation of mouse embryonic stem cells into endocrine pancreas progenitors. Stem Cells 2008; 1: 3-16.
-
(2008)
Stem Cells
, vol.1
, pp. 3-16
-
-
Serafimidis, I.1
Rakatzi, I.2
Episkopou, V.3
Gouti, M.4
Gavalas, A.5
-
35
-
-
0242698171
-
Insulin gene transcription: the factors involved in cell-type-specific and glucose-regulated expression in islet β cells are also essential during pancreatic development.
-
Jefferson LS, ed. Washington, DC: American Physiology Society
-
Stein R. Insulin gene transcription: the factors involved in cell-type-specific and glucose-regulated expression in islet β cells are also essential during pancreatic development. In: Jefferson LS, ed. Handbook of Physiology, Section 7. The Endocrine System II. Washington, DC: American Physiology Society, 2001; 25-78.
-
(2001)
Handbook of Physiology, Section 7. The Endocrine System II.
, pp. 25-78
-
-
Stein, R.1
-
36
-
-
1542297749
-
The MafA transcription factor appears to be responsible for tissue-specific expression of insulin.
-
Matsuoka T, Artner I, Henderson E, Means A, Sander M, Stein R. The MafA transcription factor appears to be responsible for tissue-specific expression of insulin. Proc Natl Acad Sci USA 2004; 101: 2930-2933.
-
(2004)
Proc Natl Acad Sci USA
, vol.101
, pp. 2930-2933
-
-
Matsuoka, T.1
Artner, I.2
Henderson, E.3
Means, A.4
Sander, M.5
Stein, R.6
-
37
-
-
0041970072
-
Members of the large Maf transcription family regulate insulin gene transcription in islet β cells.
-
Matsuoka T, Zhao L, Artner I et al. Members of the large Maf transcription family regulate insulin gene transcription in islet β cells. Mol Cell Biol 2003; 23: 6049-6062.
-
(2003)
Mol Cell Biol
, vol.23
, pp. 6049-6062
-
-
Matsuoka, T.1
Zhao, L.2
Artner, I.3
-
38
-
-
0037147306
-
MAfA is a glucose-regulated and pancreatic beta-cell-specific transcriptional activator for the insulin gene.
-
Kataoka K, Han SI, Shioda S, Hirai M, Nishizawa M, Handa H. MAfA is a glucose-regulated and pancreatic beta-cell-specific transcriptional activator for the insulin gene. J Biol Chem 2002; 51: 49903-49910.
-
(2002)
J Biol Chem
, vol.51
, pp. 49903-49910
-
-
Kataoka, K.1
Han, S.I.2
Shioda, S.3
Hirai, M.4
Nishizawa, M.5
Handa, H.6
-
39
-
-
0030707689
-
Early diabetes and abnormal postnatal pancreatic islet development in mice lacking Glut-2.
-
Guillam MT, Hummler E, Schaerer E et al. Early diabetes and abnormal postnatal pancreatic islet development in mice lacking Glut-2. Nat Genet 1997; 17: 327-330.
-
(1997)
Nat Genet
, vol.17
, pp. 327-330
-
-
Guillam, M.T.1
Hummler, E.2
Schaerer, E.3
-
40
-
-
34247345409
-
Nestin expression in pancreatic endocrine and exocrine cells of mice lacking glucagon signaling.
-
Kedees MH, Guz Y, Vuguin PM et al. Nestin expression in pancreatic endocrine and exocrine cells of mice lacking glucagon signaling. Dev Dyn 2007; 4: 1126-1133.
-
(2007)
Dev Dyn
, vol.4
, pp. 1126-1133
-
-
Kedees, M.H.1
Guz, Y.2
Vuguin, P.M.3
-
41
-
-
33845919110
-
Glucagon receptor knockout mice are resistant to diet-induced obesity and streptozotocin-mediated beta cell loss and hyperglycaemia.
-
Conarello SL, Jiang G, Mu J et al. Glucagon receptor knockout mice are resistant to diet-induced obesity and streptozotocin-mediated beta cell loss and hyperglycaemia. Diabetologia 2007; 1: 142-150.
-
(2007)
Diabetologia
, vol.1
, pp. 142-150
-
-
Conarello, S.L.1
Jiang, G.2
Mu, J.3
-
42
-
-
73249117478
-
Mice deficient for glucagon gene-derived peptides display normoglycemia and hyperplasia of islet {alpha}-cells but not of intestinal L-cells.
-
Hayashi Y, Yamamoto M, Mizoguchi H et al. Mice deficient for glucagon gene-derived peptides display normoglycemia and hyperplasia of islet {alpha}-cells but not of intestinal L-cells. Mol Endocrinol 2009; 12: 1990-1999.
-
(2009)
Mol Endocrinol
, vol.12
, pp. 1990-1999
-
-
Hayashi, Y.1
Yamamoto, M.2
Mizoguchi, H.3
-
43
-
-
0032871230
-
GLP-1 slows solid gastric emptying and inhibits insulin, glucagon, and PYY release in humans.
-
Naslund E, Bogefors J, Skogar S et al. GLP-1 slows solid gastric emptying and inhibits insulin, glucagon, and PYY release in humans. Am J Physiol 1999; 3: R910-R916.
-
(1999)
Am J Physiol
, vol.3
-
-
Naslund, E.1
Bogefors, J.2
Skogar, S.3
-
44
-
-
0030667056
-
Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans.
-
Nauck MA, Niedereichholz U, Ettler R et al. Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans. Am J Physiol 1997; 5: E981-E988.
-
(1997)
Am J Physiol
, vol.5
-
-
Nauck, M.A.1
Niedereichholz, U.2
Ettler, R.3
-
45
-
-
33845913255
-
Hypoglycemia leads to age-related loss of vision.
-
Umino Y, Everhart D, Solessio E et al. Hypoglycemia leads to age-related loss of vision. Proc Natl Acad Sci USA 2006; 51: 19541-19545.
-
(2006)
Proc Natl Acad Sci USA
, vol.51
, pp. 19541-19545
-
-
Umino, Y.1
Everhart, D.2
Solessio, E.3
-
46
-
-
79551600048
-
Glucagon receptor knockout prevents insulin-deficient type 1 diabetes in mice.
-
Lee Y, Wang MY, Du XQ, Charron MJ, Unger RH. Glucagon receptor knockout prevents insulin-deficient type 1 diabetes in mice. Diabetes 2011; 2: 391-397.
-
(2011)
Diabetes
, vol.2
, pp. 391-397
-
-
Lee, Y.1
Wang, M.Y.2
Du, X.Q.3
Charron, M.J.4
Unger, R.H.5
-
47
-
-
68849090270
-
Hepatic energy state is regulated by glucagon receptor signaling in mice.
-
Berglund ED, Lee-Young RS, Lustig DG et al. Hepatic energy state is regulated by glucagon receptor signaling in mice. J Clin Invest 2009; 8: 2412-2422.
-
(2009)
J Clin Invest
, vol.8
, pp. 2412-2422
-
-
Berglund, E.D.1
Lee-Young, R.S.2
Lustig, D.G.3
-
48
-
-
57249104894
-
Glucagon receptor signaling is essential for control of murine hepatocyte survival.
-
Sinclair EM, Yusta B, Streutker C et al. Glucagon receptor signaling is essential for control of murine hepatocyte survival. Gastroenterology 2008; 6: 2096-2106.
-
(2008)
Gastroenterology
, vol.6
, pp. 2096-2106
-
-
Sinclair, E.M.1
Yusta, B.2
Streutker, C.3
-
49
-
-
0014899070
-
Glucagon levels and metabolic effects in fasting man.
-
Marliss EB, Aoki TT, Unger RH, Soeldner JS, Cahill GF Jr. Glucagon levels and metabolic effects in fasting man. J Clin Invest 1970; 12: 2256-2270.
-
(1970)
J Clin Invest
, vol.12
, pp. 2256-2270
-
-
Marliss, E.B.1
Aoki, T.T.2
Unger, R.H.3
Soeldner, J.S.4
Cahill, G.F.5
-
50
-
-
0024321062
-
Glucagon is a primary controller of hepatic glycogenolysis and gluconeogenesis during muscular work.
-
Wasserman DH, Spalding JA, Lacy DB, Colburn CA, Goldstein RE, Cherrington AD. Glucagon is a primary controller of hepatic glycogenolysis and gluconeogenesis during muscular work. Am J Physiol 1989; 1: E108-E117.
-
(1989)
Am J Physiol
, vol.1
-
-
Wasserman, D.H.1
Spalding, J.A.2
Lacy, D.B.3
Colburn, C.A.4
Goldstein, R.E.5
Cherrington, A.D.6
-
51
-
-
69049091043
-
Pancreatic beta-cell overexpression of the glucagon receptor gene results in enhanced beta-cell function and mass.
-
Gelling RW, Vuguin PM, Du XQ et al. Pancreatic beta-cell overexpression of the glucagon receptor gene results in enhanced beta-cell function and mass. Am J Physiol Endocrinol Metab 2009; 3: E695-E707.
-
(2009)
Am J Physiol Endocrinol Metab
, vol.3
-
-
Gelling, R.W.1
Vuguin, P.M.2
Du, X.Q.3
|