-
1
-
-
0035797869
-
Plasmonics -A route to nanoscale optical devices
-
doi:10.1002/1521-4095 (200110)13:19<1501:AID-ADMA1501>3.0.CO;2-Z
-
Maier S A, Brongersma M L Kik PG, Meltzer S, Requicha A A G, Atwater H A. Plasmonics - A route to nanoscale optical devices. Adv. Mater. 2001;13:1501-1505. doi:10.1002/1521-4095 (200110)13:19<1501:AID-ADMA1501>3.0.CO;2-Z
-
(2001)
Adv. Mater.
, vol.13
, pp. 1501-1505
-
-
Maier, S.A.1
Brongersma, M.L.2
Kik, P.G.3
Meltzer, S.4
Requicha, A.A.G.5
Atwater, H.A.6
-
2
-
-
4344577323
-
Nanoribbon waveguides for subwavelength photonics integration
-
doi:10.1126/science.1100999
-
Law M, Sirbuly D J, Johnson J C, Goldberger J, Saykally R J, Yang P D.Nanoribbon waveguides for subwavelength photonics integration. Science 2004;305:1269-1273. doi:10.1126/science.1100999
-
(2004)
Science
, vol.305
, pp. 1269-1273
-
-
Law, M.1
Sirbuly, D.J.2
Johnson, J.C.3
Goldberger, J.4
Saykally, R.J.5
Yang, P.D.6
-
3
-
-
38349142594
-
Chemical sensing and imaging with metallic nanorods
-
doi:10.1039/ b711069c
-
Murphy C J, Gole A M, Hunyadi S E, Stone J W, Sisco P N, Alkilany A,Kinard B E, Hankins P., Chemical sensing and imaging with metallic nanorods. Chem. Commun. 2008;5:544-557. doi:10.1039/ b711069c
-
(2008)
Chem. Commun.
, vol.5
, pp. 544-557
-
-
Murphy, C.J.1
Gole, A.M.2
Hunyadi, S.E.3
Stone, J.W.4
Sisco, P.N.5
Alkilany, A.6
Kinard, B.E.7
Hankins, P.8
-
4
-
-
0001180577
-
The 'lightning' gold nanorods: fluorescnce enhancement of over a million compared to the gold metal
-
doi:10.1016/ S0009-2614(99)01414-1
-
Mohamed M B, Volkov V, Link S, El-Sayed M A. The 'lightning' gold nanorods: fluorescnce enhancement of over a million compared to the gold metal. Chem. Phys. Lett. 2000;317:517-523. doi:10.1016/ S0009-2614(99)01414-1
-
(2000)
Chem. Phys. Lett
, vol.317
, pp. 517-523
-
-
Mohamed, M.B.1
Volkov, V.2
Link, S.3
El-Sayed, M.A.4
-
5
-
-
57349143289
-
Advances and Prospects of Gold Nanorods
-
doi:10.1002/asia.2008 00195
-
Dapeng Yang, Daxiang Cui, Advances and Prospects of Gold Nanorods. Chem.-Asian J. 2008;3:2010-2022. doi:10.1002/asia.2008 00195
-
(2008)
Chem.-Asian J.
, vol.3
, pp. 2010-2022
-
-
Yang, D.1
Cui, D.2
-
6
-
-
23944441457
-
Fluorescence properties of gold nanorods and their application for DNA biosensing
-
doi:10.1039/b504186d
-
Li C Z, Male K B, Hrapovic S, Luong J H T. Fluorescence properties of gold nanorods and their application for DNA biosensing. Chem. Commun. 2005;313924-3926.doi:10.1039/b504186d
-
(2005)
Chem. Commun.
, pp. 313924-313926
-
-
Li, C.Z.1
Male, K.B.2
Hrapovic, S.3
Luong, J.H.T.4
-
7
-
-
33645450445
-
Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates
-
doi:10.1039/b512573a
-
Orendorff C J, Gearheart L, Jana N R, Murphy C J. Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates. Phys. Chem. Chem.Phys. 2006;8:165-170. doi:10.1039/b512573a
-
(2006)
Phys. Chem. Chem.Phys.
, vol.8
, pp. 165-170
-
-
Orendorff, C.J.1
Gearheart, L.2
Jana, N.R.3
Murphy, C.J.4
-
8
-
-
33746769474
-
Enhancement of Pt utilization in electrocatalysts by using gold nanoparticles
-
doi:10.1002/anie.200600155
-
Zhao D, Xu B Q. Enhancement of Pt utilization in electrocatalysts by using gold nanoparticles. Angew. Chem.-Int. Edit. 2006;45:4955-4959.doi:10.1002/anie.200600155
-
(2006)
Angew. Chem.-Int. Edit.
, vol.45
, pp. 4955-4959
-
-
Zhao, D.1
Xu, B.Q.2
-
9
-
-
33845293254
-
Morphological control of catalytically active platinum nanocrystals
-
doi:10.1002/anie.2006 03068
-
Lee H, Habas S E, Kweskin S, Butcher D, Somorjai G A,Yang P D. Morphological control of catalytically active platinum nanocrystals.Angew. Chem.-Int. Edit. 2006;45:7824-7828. doi:10.1002/anie.2006 03068
-
(2006)
Angew. Chem.-Int. Edit.
, vol.45
, pp. 7824-7828
-
-
Lee, H.1
Habas, S.E.2
Kweskin, S.3
Butcher, D.4
Somorjai, G.A.5
Yang, P.D.6
-
10
-
-
2942532246
-
Changing catalytic activity during colloidal platinum nanocatalysis due to shape changes: Electrontransfer reaction
-
doi:10. 1021/ja0486061
-
Narayanan R, El-Sayed M A. Changing catalytic activity during colloidal platinum nanocatalysis due to shape changes: Electrontransfer reaction. J. Am. Chem. Soc. 2004;126:7194- 7195. doi:10. 1021/ja0486061
-
(2004)
J. Am. Chem. Soc.
, vol.126
, pp. 7194-7195
-
-
Narayanan, R.1
El-Sayed, M.A.2
-
11
-
-
27144460850
-
Evolution of catalytic activity of Au-Ag bimetallic nanoparticles on mesoporous support for CO oxidation
-
doi:10.1021/ jp051530q
-
Wang A Q, Chang C M, Mou C Y. Evolution of catalytic activity of Au-Ag bimetallic nanoparticles on mesoporous support for CO oxidation. J. Phys. Chem. B 2005;109:18860-18867. doi:10.1021/ jp051530q
-
(2005)
J. Phys. Chem. B
, vol.109
, pp. 18860-18867
-
-
Wang, A.Q.1
Chang, C.M.2
Mou, C.Y.3
-
12
-
-
34547579612
-
High sensitivity ofsensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system
-
doi:10.1021/nl070557d
-
Eghtedari M, Oraevsky A,Copland J A,Kotov N A,Conjusteau A, Conjusteau A, Motamedi M. High sensitivity ofsensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system. Nano Lett. 2007;7:1914-1918.doi:10.1021/nl070557d
-
(2007)
Nano Lett
, vol.7
, pp. 1914-1918
-
-
Eghtedari, M.1
Oraevsky, A.2
Copland, J.A.3
Kotov, N.A.4
Conjusteau, A.5
Conjusteau, A.6
Motamedi, M.7
-
13
-
-
33750523415
-
Synthesis and electrical characterization of silver nanobeams
-
doi:10.1021/nl061705n
-
Wiley B J, Wang Z H, Wei J, Yin Y D,Cobden D H, Xia Y N. Synthesis and electrical characterization of silver nanobeams. Nano Lett. 2006;6:2273-2278 doi:10.1021/nl061705n
-
(2006)
Nano Lett
, vol.6
, pp. 2273-2278
-
-
Wiley, B.J.1
Wang, Z.H.2
Wei, J.3
Yin, Y.D.4
Cobden, D.H.5
Xia, Y.N.6
-
14
-
-
18144410597
-
Immunotargeted nanoshells for integrated cancer imaging and therapy
-
doi:10.1021/nl050127s
-
Loo C, Lowery A, Halas N, West J, Drezek R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 2005; 5:709-711.doi:10.1021/nl050127s
-
(2005)
Nano Lett
, vol.5
, pp. 709-711
-
-
Loo, C.1
Lowery, A.2
Halas, N.3
West, J.4
Drezek, R.5
-
15
-
-
33644642166
-
Why goldnanoparticles are more precious than pretty gold:Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes
-
doi:10.1039/b514191e
-
Eustis S, El-Sayed M A. Why goldnanoparticles are more precious than pretty gold:Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 2006;35:209-217 doi:10.1039/b514191e
-
(2006)
Chem. Soc. Rev.
, vol.35
, pp. 209-217
-
-
Eustis, S.1
El-Sayed, M.A.2
-
16
-
-
85013907898
-
Nanoalloys: From theory to applications of alloy clusters and nanoparticles
-
doi:10.1021/cr040090g
-
Ferrando R, Jellinek J, Johnston R L. Nanoalloys: From theory to applications of alloy clusters and nanoparticles. Chem. Rev. 2008; 108:845-910.doi:10.1021/cr040090g
-
(2008)
Chem. Rev.
, vol.108
, pp. 845-910
-
-
Ferrando, R.1
Jellinek, J.2
Johnston, R.L.3
-
17
-
-
10844242298
-
Polyol synthesis of platinum nanoparticles: Control of morphology with sodium nitrate
-
doi:10.1021/nl048570a
-
Herricks T, Chen J Y, Xia Y N. Polyol synthesis of platinum nanoparticles: Control of morphology with sodium nitrate. Nano Lett. 2004;4:2367-2371. doi:10.1021/nl048570a
-
(2004)
Nano Lett
, vol.4
, pp. 2367-2371
-
-
Herricks, T.1
Chen, J.Y.2
Xia, Y.N.3
-
18
-
-
27744500374
-
Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal anorods on aspect ratio, size, end-cap shape, and medium refractive index
-
doi:10.1021/jp0543 85p
-
Lee K S, El-Sayed M A. Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal anorods on aspect ratio, size, end-cap shape, and medium refractive index. J. Phys. Chem. B 2005;109:20331-20338. doi:10.1021/jp0543 85p
-
(2005)
J. Phys. Chem. B
, vol.109
, pp. 20331-20338
-
-
Lee, K.S.1
El-Sayed, M.A.2
-
19
-
-
33750318236
-
Gold and silver nanoparticles in sensing and imaging:Sensitivity of plasmon response to size, shape, andmetal composition
-
doi:10.102 1/jp06253 6y
-
Lee K S, El-Sayed M A. Gold and silver nanoparticles in sensing and imaging:Sensitivity of plasmon response to size, shape, andmetal composition. J. Phys. Chem. B 2006; 110: 19220-19225. doi:10.102 1/jp06253 6y
-
(2006)
J. Phys. Chem. B
, vol.110
, pp. 19220-19225
-
-
Lee, K.S.1
El-Sayed, M.A.2
-
20
-
-
0000547095
-
Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant
-
doi:10.1021/jp990183f
-
Link S, Mohamed M B, El-Sayed M A. Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J. Phys. Chem. B. 1999;103:3073-3077.doi:10.1021/jp990183f
-
(1999)
J. Phys. Chem. B.
, vol.103
, pp. 3073-3077
-
-
Link, S.1
Mohamed, M.B.2
El-Sayed, M.A.3
-
21
-
-
30344445988
-
Tailoring surface plasmons through the morphology and assembly of metal nanoparticles
-
doi:10.1021/la0513353
-
Liz-Marzan L M. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir. 2006; 2:32-41.doi:10.1021/la0513353
-
(2006)
Langmuir
, vol.2
, pp. 32-41
-
-
Liz-Marzan, L.M.1
-
22
-
-
27644436123
-
Localized surface plasmon resonance spectroscopy of single silver nanocubes
-
doi:10.1021/nl0515753
-
Sherry L J,Chang S H,Schatz G C,Van Duyne R P, Wiley B J, Xia Y N. Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett.2005; 5:2034-2038. doi:10.1021/nl0515753
-
(2005)
Nano Lett
, vol.5
, pp. 2034-2038
-
-
Sherry, L.J.1
Chang, S.H.2
Schatz, G.C.3
Van Duyne, R.P.4
Wiley, B.J.5
Xia, Y.N.6
-
23
-
-
34447121984
-
Tunable plasmonic lattices of silver nanocrystals
-
doi:10.1038/ nnano.2007.189
-
Tao A, Sinsermsuksakul P, Yang P. Tunable plasmonic lattices of silver nanocrystals. Nat. Nanotechnol. 2007;2:435-440. doi:10.1038/ nnano.2007.189
-
(2007)
Nat. Nanotechnol.
, vol.2
, pp. 435-440
-
-
Tao, A.1
Sinsermsuksakul, P.2
Yang, P.3
-
24
-
-
12444299954
-
Shape-controlled synthesis of metal nanostructures: The case of silver
-
doi:10.1002/chem. 200400927
-
Wiley B, Sun Y G, Mayers B, Xia Y N. Shape-controlled synthesis of metal nanostructures: The case of silver. Chem.-Eur. J. 2005;11: 454-463.doi:10.1002/chem. 200400927
-
(2005)
Chem.-Eur. J.
, vol.11
, pp. 454-463
-
-
Wiley, B.1
Sun, Y.G.2
Mayers, B.3
Xia, Y.N.4
-
25
-
-
29144452197
-
Corrosionbased synthesis of single-crystalPd nanoboxes and nanocagesand their surface plasmon properties
-
doi:10.1002/anie.200502722
-
Xiong Y J, Wiley B, Chen J Y, Li Z Y,Yin Y D, Xia Y N. Corrosionbased synthesis of single-crystalPd nanoboxes and nanocagesand their surface plasmon properties. Angew. Chem.-Int. Edit. 2005;44: 7913-7917.doi:10.1002/anie.200502722
-
(2005)
Angew. Chem.-Int. Edit.
, vol.44
, pp. 7913-7917
-
-
Xiong, Y.J.1
Wiley, B.2
Chen, J.Y.3
Li, Z.Y.4
Yin, Y.D.5
Xia, Y.N.6
-
26
-
-
0345119047
-
Alloying and dealloying processes involved in the preparation of metal nanoshells through a galvanic replacement reaction
-
doi:10.1021/nl034765r
-
Sun Y G, Xia Y A. Alloying and dealloying processes involved in the preparation of metal nanoshells through a galvanic replacement reaction. Nano Lett. 2003;3:1569-1572. doi:10.1021/nl034765r
-
(2003)
Nano Lett
, vol.3
, pp. 1569-1572
-
-
Sun, Y.G.1
Xia, Y.A.2
-
27
-
-
34249714213
-
Size and composition tunable Ag-Au alloy nanoparticles by replacement reactions
-
doi:10.1088/0957-448 4/18/24/245605
-
Zhang Q B, Lee J Y, Yang J, Boothroyd C, Zhang J X. Size and composition tunable Ag-Au alloy nanoparticles by replacement reactions. Nanotechnology. 2007;18:245605.doi:10.1088/0957-448 4/18/24/245605
-
(2007)
Nanotechnology
, vol.18
, pp. 245605
-
-
Zhang, Q.B.1
Lee, J.Y.2
Yang, J.3
Boothroyd, C.4
Zhang, J.X.5
-
28
-
-
34547247608
-
Fabrication of cubic nanocages and nanoframes by dealloying Au/Ag alloy nanoboxeswith an aqueous etchant based on Fe(NO3)3 or NH4OH
-
doi:10.1021/nl070838l
-
Lu X M, Au L, McLellan J, Li Z Y, Marquez M, Xia Y N, Fabrication of cubic nanocages and nanoframes by dealloying Au/Ag alloy nanoboxeswith an aqueous etchant based on Fe(NO3)3 or NH4OH. Nano Lett. 2007; 7:1764-1769. doi:10.1021/nl070838l
-
(2007)
Nano Lett
, vol.7
, pp. 1764-1769
-
-
Lu, X.M.1
Au, L.2
McLellan, J.3
Li, Z.Y.4
Marquez, M.5
Xia, Y.N.6
-
29
-
-
27544438205
-
Optical properties of Pd-Ag and Pt-Ag nanoboxes synthesized via galvanic replacement reactions
-
doi:10.1021/ nl051652u
-
Chen J Y, Wiley B, McLellan J, Xiong Y J, Li Z Y, Xia Y N. Optical properties of Pd-Ag and Pt-Ag nanoboxes synthesized via galvanic replacement reactions. Nano Lett. 2005;5: 2058-2062. doi:10.1021/ nl051652u
-
(2005)
Nano Lett
, vol.5
, pp. 2058-2062
-
-
Chen, J.Y.1
Wiley, B.2
McLellan, J.3
Xiong, Y.J.4
Li, Z.Y.5
Xia, Y.N.6
-
30
-
-
34250662273
-
Interfacial depositionof Ag on Au seeds leading to AucoreAgshell in organic media
-
doi:10.1016/j.jcis.2007.03.032
-
Chandran S P, Ghatak J, Satyam P V, Sastry M. Interfacial depositionof Ag on Au seeds leading to AucoreAgshell in organic media. J. Coll. Inter. Sci. 2007;312: 498-505. doi:10.1016/j.jcis.2007.03.032
-
(2007)
J. Coll. Inter. Sci.
, vol.312
, pp. 498-505
-
-
Chandran, S.P.1
Ghatak, J.2
Satyam, P.V.3
Sastry, M.4
-
31
-
-
27544500121
-
Core-shell Ag-Au nanoparticles from replacement reaction in organic medium
-
doi:10.1021/jp052242x
-
Yang J, Lee J Y, Too H P. Core-shell Ag-Au nanoparticles from replacement reaction in organic medium. J. Phys. Chem. B 2005; 109:19208-19212.doi:10.1021/jp052242x
-
(2005)
J. Phys. Chem. B.
, vol.109
, pp. 19208-19212
-
-
Yang, J.1
Lee, J.Y.2
Too, H.P.3
-
32
-
-
0035901815
-
Reduction of Ag(CN)(2)(-) on silverand platinum colloidal nanoparticles
-
doi:10.1021/ la001081f
-
Henglein A. Reduction of Ag(CN)(2)(-) on silverand platinum colloidal nanoparticles. Langmuir. 2001;17:2329-2333. doi:10.1021/ la001081f
-
(2001)
Langmuir
, vol.17
, pp. 2329-2333
-
-
Henglein, A.1
-
33
-
-
0036163825
-
Improved size control of large palladium nanoparticles by a seeding growth method
-
doi:10.1039/b109797k
-
Lu L H, Wang H S, Xi S Q, Zhang H J. Improved size control of large palladium nanoparticles by a seeding growth method. J. Mater. Chem. 2002;12:156-158.doi:10.1039/b109797k
-
(2002)
J. Mater. Chem.
, vol.12
, pp. 156-158
-
-
Lu, L.H.1
Wang, H.S.2
Xi, S.Q.3
Zhang, H.J.4
-
34
-
-
33751233266
-
Photochemistry on metal nanoparticles
-
doi:10.1021/ cr050167g
-
Watanabe K, Menzel D, Nilius N, Freund H J. Photochemistry on metal nanoparticles. Chem. Rev. 2006;106:4301-4320. doi:10.1021/ cr050167g
-
(2006)
Chem. Rev.
, vol.106
, pp. 4301-4320
-
-
Watanabe, K.1
Menzel, D.2
Nilius, N.3
Freund, H.J.4
-
35
-
-
0742321804
-
Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applicationstoward biology,catalysis, nanotechnology
-
doi:10.1021/cr030698+
-
Daniel M C, Astruc D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum- size-related properties, and applicationstoward biology,catalysis, nanotechnology. Chem. Rev. 2004; 104:293-346. doi:10.1021/cr030698+
-
(2004)
Chem. Rev.
, vol.104
, pp. 293-346
-
-
Daniel, M.C.1
Astruc, D.2
-
36
-
-
0034784439
-
Nanoscopic metal particles-Synthetic methods and potential applications
-
doi:10.1002/1099-0682(200109)2001:10<2455::AIDEJIC2455>3.0.CO;2-Z
-
Bonnemann H, Richards R M. Nanoscopic metal particles-Synthetic methods and potential applications. Eur. J. Inorg. Chem. 2001; 10:2455-2480.doi:10.1002/1099-0682(200109)2001:10<2455::AIDEJIC2455>3.0.CO;2-Z
-
(2001)
Eur. J. Inorg. Chem.
, vol.10
, pp. 2455-2480
-
-
Bonnemann, H.1
Richards, R.M.2
-
37
-
-
44449125745
-
Epitaxial growth of heterogeneous metal nanocrystals: From gold nano-octahedra to palladium and silver nanocubes
-
doi:10.1021/ja801566d
-
Fan F R, Liu D Y, Wu Y F, Duan S, Xie Z X, Jiang Z Y, Tian Z Q. Epitaxial growth of heterogeneous metal nanocrystals: From gold nano-octahedra to palladium and silver nanocubes. J. Am. Chem. Soc. 2008;130:6949-6950.doi:10.1021/ja801566d
-
(2008)
J. Am. Chem. Soc.
, vol.130
, pp. 6949-6950
-
-
Fan, F.R.1
Liu, D.Y.2
Wu, Y.F.3
Duan, S.4
Xie, Z.X.5
Jiang, Z.Y.6
Tian, Z.Q.7
-
38
-
-
30844436613
-
Bimetallic nanoparticles-novel materials for chemical and physical applications
-
doi:10.1039/a805753b
-
Toshima N, Yonezawa T. Bimetallic nanoparticles-novel materials for chemical and physical applications. New J. Chem. 1998;22:1179-1201 doi:10.1039/a805753b
-
(1998)
New J. Chem.
, vol.22
, pp. 1179-1201
-
-
Toshima, N.1
Yonezawa, T.2
-
39
-
-
0040245935
-
Surface plasmon spectroscopy of nanosized metal particles
-
doi:10.1021/la9502711
-
Mulvaney P. Surface plasmon spectroscopy of nanosized metal particles. Langmuir 1996;12:788-800. doi:10.1021/la9502711
-
(1996)
Langmuir
, vol.12
, pp. 788-800
-
-
Mulvaney, P.1
-
40
-
-
41149107352
-
Ru-Pt coreshell nanoparticles for preferential oxidation of carbon monoxide in hydrogen
-
doi:10.1038/nmat2156
-
Alayoglu S, Nilekar A U, Mavrikakis M, Eichhorn B. Ru-Pt coreshell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat. Mater. 2008;7:333-338. doi:10.1038/nmat2156
-
(2008)
Nat. Mater.
, vol.7
, pp. 333-338
-
-
Alayoglu, S.1
Nilekar, A.U.2
Mavrikakis, M.3
Eichhorn, B.4
-
41
-
-
0034258437
-
Novel synthesis, structure and catalysis of inverted core/shell structured Pd/Pt bimetallic nanoclusters
-
doi:10.1007/s100530170094
-
Toshima N, Shiraishi Y, Shiotsuki A, Ikenaga D, Wang Y. Novel synthesis, structure and catalysis of inverted core/shell structured Pd/Pt bimetallic nanoclusters. Eur. Phys. J. D.2001;16:209-212. doi:10.1007/s100530170094
-
(2001)
Eur. Phys. J. D
, vol.16
, pp. 209-212
-
-
Toshima, N.1
Shiraishi, Y.2
Shiotsuki, A.3
Ikenaga, D.4
Wang, Y.5
-
42
-
-
33847373730
-
Palladiumcoated gold nanoparticles with a controlled shell thickness used as surface-enhanced Raman scattering substrate
-
doi:10.1021/jp0652906
-
Hu J W, Li J F, Ren B, Wu D Y, Sun S G, Tian Z Q. Palladiumcoated gold nanoparticles with a controlled shell thickness used as surface-enhanced Raman scattering substrate. J. Phys. Chem. C 2007;111:1105-1112.doi:10.1021/jp0652906
-
(2007)
J. Phys. Chem. C.
, vol.111
, pp. 1105-1112
-
-
Hu, J.W.1
Li, J.F.2
Ren, B.3
Wu, D.Y.4
Sun, S.G.5
Tian, Z.Q.6
-
43
-
-
33645683856
-
Synthesis of Agcore Aushell bimetallic nanoparticles for immunoassay based on surfaceenhanced Raman spectroscopy
-
doi:10.1021/jp056203x
-
Cui Y, Ren B, Yao J L, Gu R A, Tian Z Q.Synthesis of Agcore Aushell bimetallic nanoparticles for immunoassay based on surfaceenhanced Raman spectroscopy. J. Phys. Chem. B 2006;110:4002-4006. doi:10.1021/jp056203x
-
(2006)
J. Phys. Chem. B
, vol.110
, pp. 4002-4006
-
-
Cui, Y.1
Ren, B.2
Yao, J.L.3
Gu, R.A.4
Tian, Z.Q.5
-
44
-
-
0000206864
-
Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition
-
doi:10.1021/ jp990387w
-
Link S, Wang Z L, El-Sayed M A. Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition. J. Phys. Chem. B 1999;103:3529-3533. doi:10.1021/ jp990387w
-
(1999)
J. Phys. Chem. B
, vol.103
, pp. 3529-3533
-
-
Link, S.1
Wang, Z.L.2
El-Sayed, M.A.3
-
45
-
-
0038572597
-
Solution-phase synthesis of sub-10 nm Au-Ag alloy nanoparticles
-
doi:10.1021/ nl025774n
-
Mallin M P, Murphy C J. Solution-phase synthesis of sub-10 nm Au-Ag alloy nanoparticles. Nano Lett. 2002;2:1235-1237. doi:10.1021/ nl025774n
-
(2002)
Nano Lett
, vol.2
, pp. 1235-1237
-
-
Mallin, M.P.1
Murphy, C.J.2
-
46
-
-
34248171142
-
Synthesis of Au Ag and Au-Ag alloy nanoparticles in aqueous polymer solution
-
Pal A, Shah S, Devi S. Synthesis of Au, Ag and Au-Ag alloy nanoparticles in aqueous polymer solution. Coll. Surf. A-Phys. Eng. Asp. 2007;302: 51-57.
-
(2007)
Coll. Surf. A-Phys. Eng. Asp.
, vol.302
, pp. 51-57
-
-
Pal, A.1
Shah, S.2
Devi, S.3
-
47
-
-
0012539614
-
Seed mediated formation of bimetallic nanoparticles by UV irradiation: A photochemical approach for the preparation of "core-shell" stype tructures
-
doi:10.1021/nl0100264
-
Mallik K, Mandal M, Pradhan N, Pal T. Seed mediated formation of bimetallic nanoparticles by UV irradiation: A photochemical approach for the preparation of "core-shell" stype tructures. Nano Lett. 2001;1:319-322.doi:10.1021/nl0100264
-
(2001)
Nano Lett
, vol.1
, pp. 319-322
-
-
Mallik, K.1
Mandal, M.2
Pradhan, N.3
Pal, T.4
-
48
-
-
0000490032
-
Stable Hydrosols of Metallic and Bimetallic Nanoparticles Immobilized on Imogolite Fibers
-
doi:10.1021/j100041a031
-
Luis M, Liz-Marzan A P P. Stable Hydrosols of Metallic and Bimetallic Nanoparticles Immobilized on Imogolite Fibers. J. Phys. Chem. 1995;99:15120-15128.doi:10.1021/j100041a031
-
(1995)
J. Phys. Chem.
, vol.99
, pp. 15120-15128
-
-
Luis, M.1
Liz-Marzan, A.P.P.2
-
49
-
-
0346758796
-
When gold is not noble: Catalysis by nanoparticles
-
doi:10.1002/tcr.10053
-
Haruta A. When gold is not noble: Catalysis by nanoparticles. Chem. Rec. 2003; 3:75-87. doi:10.1002/tcr.10053
-
(2003)
Chem. Rec.
, vol.3
, pp. 75-87
-
-
Haruta, A.1
-
50
-
-
0141441946
-
Structural, electronic, and impurity-doping effects in nanoscale chemistry: Supported gold nanoclusters
-
doi:10.1002/ anie.200390334
-
Hakkinen H, Abbet W, Sanchez A, Heiz U, Landman U.Structural, electronic, and impurity-doping effects in nanoscale chemistry: Supported gold nanoclusters. Angew. Chem.-Int. Edit. 2003;42:1297-1300.doi:10.1002/ anie.200390334
-
(2003)
Angew. Chem.-Int. Edit.
, vol.42
, pp. 1297-1300
-
-
Hakkinen, H.1
Abbet, W.2
Sanchez, A.3
Heiz, U.4
Landman, U.5
-
51
-
-
4344680519
-
Effect of impurity and pretreatment conditions on the catalytic activity of Au powder for CO oxidation
-
doi:10.1023/B:CATL.0000038585.12878.9a
-
Iizuka Y, Kawamoto A, Akita K, Date M, Tsubota S, Okumura M, Haruta M. Effect of impurity and pretreatment conditions on the catalytic activity of Au powder for CO oxidation. Catal. Lett. 2004; 97:203-208. doi:10.1023/B:CATL.0000038585.12878.9a
-
(2004)
Catal. Lett.
, vol.97
, pp. 203-208
-
-
Iizuka, Y.1
Kawamoto, A.2
Akita, K.3
Date, M.4
Tsubota, S.5
Okumura, M.6
Haruta, M.7
-
52
-
-
12344323778
-
Synergistic effect in an Au-Ag alloy nanocatalyst: CO oxidation
-
doi:10.1021/jp044938g
-
Liu J H, Wang A Q, Chi Y S, Lin H P, Mou C Y. Synergistic effect in an Au-Ag alloy nanocatalyst: CO oxidation. J. Phys. Chem. B 2005; 109:40-43.doi:10.1021/jp044938g
-
(2005)
J. Phys. Chem. B.
, vol.109
, pp. 40-43
-
-
Liu, J.H.1
Wang, A.Q.2
Chi, Y.S.3
Lin, H.P.4
Mou, C.Y.5
-
53
-
-
20444429026
-
A novel efficient Au-Ag alloy catalyst system: preparation, activity, and characterization
-
doi:10.1016/j.jcat.2005.04.028
-
Wang A Q, Liu J H, Lin S D, Lin T S, Mou C Y. A novel efficient Au-Ag alloy catalyst system: preparation, activity, and characterization. J. Catal. 2005;233:186-197. doi:10.1016/j.jcat.2005.04.028
-
(2005)
J. Catal.
, vol.233
, pp. 186-197
-
-
Wang, A.Q.1
Liu, J.H.2
Lin, S.D.3
Lin, T.S.4
Mou, C.Y.5
-
54
-
-
41549130357
-
CO oxidation on unsupported Au-55, Ag-55, and Au25Ag30 nanoclusters
-
doi:10.1063/1.2841364
-
Chang C M, Cheng C, Wei C M. CO oxidation on unsupported Au-55, Ag-55, and Au25Ag30 nanoclusters. J. Chem. Phys. 2008;128: 124710.doi:10.1063/1.2841364
-
(2008)
J. Chem. Phys.
, vol.128
, pp. 124710
-
-
Chang, C.M.1
Cheng, C.2
Wei, C.M.3
-
55
-
-
28944437209
-
Au-Ag alloy nanoparticle as catalyst for CO oxidation: Effect of Si/Al ratio of mesoporous support
-
doi:10.1016/j.jcat.2005.10.030
-
Wang A Q, Hsieh Y, Chen Y F, Mou C Y. Au-Ag alloy nanoparticle as catalyst for CO oxidation: Effect of Si/Al ratio of mesoporous support. J. Catal. 2006;237:197-206. doi:10.1016/j.jcat.2005.10.030
-
(2006)
J. Catal.
, vol.237
, pp. 197-206
-
-
Wang, A.Q.1
Hsieh, Y.2
Chen, Y.F.3
Mou, C.Y.4
-
56
-
-
33748283729
-
Crystal structures and growth mechanisms of Au@Ag core-shell nanoparticles prepared by the microwave-polyol method
-
doi:10.1021/cg060103e
-
Tsuji M, Miyamae N, Lim S, Kimura K, Zhang X, Hikino S Nishio M. Crystal structures and growth mechanisms of Au@Ag core-shell nanoparticles prepared by the microwave-polyol method. Cryst. Growth Des. 2006;6:1801-1807.doi:10.1021/cg060103e
-
(2006)
Cryst. Growth Des.
, vol.6
, pp. 1801-1807
-
-
Tsuji, M.1
Miyamae, N.2
Lim, S.3
Kimura, K.4
Zhang, X.5
Hikino, S.6
Nishio, M.7
-
57
-
-
3543005943
-
Synthesis of Au-core-Ag-shell type bimetallic nanoparticles for single molecule detection in solution by SERS method
-
doi:10.1023/ B:NANO.0000023227.17871.0f
-
Mandal M, Jana N R, Kundu S, Ghosh S K, Panigrahi M, Pal T. Synthesis of Au-core-Ag-shell type bimetallic nanoparticles for single molecule detection in solution by SERS method. J. Nanopart. Res. 2004;6:53-61.doi:10.1023/ B:NANO.0000023227.17871.0f
-
(2004)
J. Nanopart. Res.
, vol.6
, pp. 53-61
-
-
Mandal, M.1
Jana, N.R.2
Kundu, S.3
Ghosh, S.K.4
Panigrahi, M.5
Pal, T.6
-
58
-
-
42249087503
-
Gold nanorod-seeded growth of silver nanostructures:From homogeneous coating to anisotropic coating
-
doi:10.1021/la702999c
-
Xiang Y J, Wu X C, Liu D F, Li Z Y, Chu W G, Feng L L, Zhang K, Zhou W Y, Xie S S. Gold nanorod-seeded growth of silver nanostructures:From homogeneous coating to anisotropic coating. Langmuir. 2008;24:3465-3470. doi:10.1021/la702999c
-
(2008)
Langmuir
, vol.24
, pp. 3465-3470
-
-
Xiang, Y.J.1
Wu, X.C.2
Liu, D.F.3
Li, Z.Y.4
Chu, W.G.5
Feng, L.L.6
Zhang, K.7
Zhou, W.Y.8
Xie, S.S.9
-
59
-
-
55749110188
-
Synthesis of Complex Au/ Ag Nanorods by Controlled Overgrowth
-
doi:10.1002/ adma.200800613
-
Park K, Vaia R A,Synthesis of Complex Au/ Ag Nanorods by Controlled Overgrowth. Adv. Mater. 2008;20:3882-3887.doi:10.1002/ adma.200800613
-
(2008)
Adv. Mater.
, vol.20
, pp. 3882-3887
-
-
Park, K.1
Vaia, R.A.2
-
60
-
-
3442891757
-
Synthesis of dumbbell-shaped Au-Ag core-shell nanorods by seed-mediated growth under alkaline conditions
-
doi:10.1021/la048791w
-
Huang C C, Yang Z S, Chang H T,Synthesis of dumbbell-shaped Au-Ag core-shell nanorods by seed-mediated growth under alkaline conditions. Langmuir.2004;20:6089-6092.doi:10.1021/la048791w
-
(2004)
Langmuir
, vol.20
, pp. 6089-6092
-
-
Huang, C.C.1
Yang, Z.S.2
Chang, H.T.3
-
61
-
-
2542468562
-
Synthesis and optical characterization of Au/Ag core/shell nanorods
-
doi:10.1021/jp037644o
-
Liu M Z,Guyot-Sionnest P, Synthesis and optical characterization of Au/Ag core/shell nanorods. J. Phys. Chem. B 2004;108:5882-5888. doi:10.1021/jp037644o
-
(2004)
J. Phys. Chem. B
, vol.108
, pp. 5882-5888
-
-
Liu, M.Z.1
Guyot-Sionnest, P.2
-
62
-
-
12844259566
-
Surface enrichment of Ag atoms in Au/Ag alloy nanoparticles revealed by surface enhanced Raman scattering spectroscopy
-
doi:10.1016/j.cplet t.2004.12.025
-
Kim K, Kim K, Lee S J.Surface enrichment of Ag atoms in Au/Ag alloy nanoparticles revealed by surface enhanced Raman scattering spectroscopy. Chem. Phys. Lett. 2005;403:77-82. doi:10.1016/j.cplet t.2004.12.025
-
(2005)
Chem. Phys. Lett.
, vol.403
, pp. 77-82
-
-
Kim, K.1
Kim, K.2
Lee, S.J.3
-
63
-
-
33644754277
-
Laser-assisted synthesis of Au-Ag alloy nanoparticles insolution
-
doi:10.1021/jp056677w
-
Peng Z Q, Spliethoff B, Tesche B, Walther T, Kleinermanns K. Laser-assisted synthesis of Au-Ag alloy nanoparticles insolution. J. Phys. Chem. B 2006;110:2549-2554.doi:10.1021/jp056677w
-
(2006)
J. Phys. Chem. B.
, vol.110
, pp. 2549-2554
-
-
Peng, Z.Q.1
Spliethoff, B.2
Tesche, B.3
Walther, T.4
Kleinermanns, K.5
-
64
-
-
33645415465
-
A simple and "green" method for the synthesis of Au, Ag, and Au-Ag alloy nanoparticles
-
doi:10.1039/b512540e
-
Raveendran P, Fu J, Wallen S L. A simple and "green" method for the synthesis of Au, Ag, and Au-Ag alloy nanoparticles. Green Chem. 2006;8:34-38. doi:10.1039/b512540e
-
(2006)
Green Chem
, vol.8
, pp. 34-38
-
-
Raveendran, P.1
Fu, J.2
Wallen, S.L.3
-
65
-
-
51149092606
-
Synthesis and absorption spectra properties of Au-Ag alloy nanoparticles using gallic acid as reductant
-
Wang W X, Huang Y P, Chen Q F, Xu S K, Yang D Z. Synthesis and absorption spectra properties of Au-Ag alloy nanoparticles using gallic acid as reductant. Spectrosc. Spectral Anal. 2008;28:1726-1729.
-
(2008)
Spectrosc. Spectral Anal.
, vol.28
, pp. 1726-1729
-
-
Wang, W.X.1
Huang, Y.P.2
Chen, Q.F.3
Xu, S.K.4
Yang, D.Z.5
-
66
-
-
47149112570
-
Facile stabilization of goldsilver alloy nanoparticles on cellulose nanocrystal
-
doi:10.1021/ jp710767w
-
Shin Y, Bae I T, Arey B W, Exarhos G J. Facile stabilization of goldsilver alloy nanoparticles on cellulose nanocrystal. J. Phys. Chem. C 2008;112: 4844-4848. doi:10.1021/ jp710767w
-
(2008)
J. Phys. Chem. C
, vol.112
, pp. 4844-4848
-
-
Shin, Y.1
Bae, I.T.2
Arey, B.W.3
Exarhos, G.J.4
-
67
-
-
0036098525
-
Formation and characterization of Au-Ag bimetallic nanoparticles in water-in-oil microemulsions
-
doi:10.1039/b110749f
-
Chen D H, Chen C J. Formation and characterization of Au-Ag bimetallic nanoparticles in water-in-oil microemulsions. J. Mater. Chem. 2002;12:1557-1562.doi:10.1039/b110749f
-
(2002)
J. Mater. Chem.
, vol.12
, pp. 1557-1562
-
-
Chen, D.H.1
Chen, C.J.2
-
68
-
-
77749249420
-
Surface Enrichment of Ag Atoms in Au/Ag Alloy Nanoparticles Revealed by Surface-Enhanced Raman Scattering of 2 6-Dimethylphenyl Isocyanide
-
doi:10.1021/jp9112624
-
Kim K, Kim K L, Choi J Y, Lee H B, Shin K S, Surface Enrichment of Ag Atoms in Au/Ag Alloy Nanoparticles Revealed by Surface-Enhanced Raman Scattering of 2,6-Dimethylphenyl Isocyanide. J. Phys. Chem. C 2010;114: 3448-3453. doi:10.1021/jp9112624
-
(2010)
J. Phys. Chem. C
, vol.114
, pp. 3448-3453
-
-
Kim, K.1
Kim, K.L.2
Choi, J.Y.3
Lee, H.B.4
Shin, K.S.5
-
69
-
-
74849086911
-
A Comparison Study of the Catalytic Properties of Au-Based Nanocages, Nanoboxes, and Nanoparticles
-
doi:10.1021/nl903062e
-
Zeng J, Zhang Q, Chen J Y, Xia Y N. A Comparison Study of the Catalytic Properties of Au-Based Nanocages, Nanoboxes, and Nanoparticles. Nano Lett. 2010;10:30-35. doi:10.1021/nl903062e
-
(2010)
Nano Lett
, vol.10
, pp. 30-35
-
-
Zeng, J.1
Zhang, Q.2
Chen, J.Y.3
Xia, Y.N.4
-
70
-
-
58149092374
-
Gold Nanocages: Synthesis, Properties, and Applications
-
doi:10.1021/ar800018v
-
Skrabalak S E, Chen J Y, Sun Y G, Lu X M, Au L, Cobley C M, Xia Y N. Gold Nanocages: Synthesis, Properties, and Applications. Acc. Chem. Res. 2008;41:1587-1595.doi:10.1021/ar800018v
-
(2008)
Acc. Chem. Res.
, vol.41
, pp. 1587-1595
-
-
Skrabalak, S.E.1
Chen, J.Y.2
Sun, Y.G.3
Lu, X.M.4
Au, L.5
Cobley, C.M.6
Xia, Y.N.7
-
71
-
-
77950671121
-
Gold Nanocages as Photothermal Transducers for Cancer Treatment
-
doi:10.1002/small.200 902216
-
Chen J Y, Glaus C, Laforest R, Zhang Q, Yang M X, Gidding M, Welch M J, Xia Y N. Gold Nanocages as Photothermal Transducers for Cancer Treatment. Small. 2010;6:811-817. doi:10.1002/small.200 902216
-
(2010)
Small
, vol.6
, pp. 811-817
-
-
Chen, J.Y.1
Glaus, C.2
Laforest, R.3
Zhang, Q.4
Yang, M.X.5
Gidding, M.6
Welch, M.J.7
Xia, Y.N.8
-
72
-
-
75749157396
-
Quantifying the Cellular Uptake of Antibody-Conjugated Au Nanocages by Two-Photon Microscopy and Inductively Coupled Plasma Mass Spectrometry
-
dio:10.1021/nn9 01392m
-
Au L, Zhang Q, Cobley C M, Gidding M, Schwartz A G, Chen J Y, Xia Y N. Quantifying the Cellular Uptake of Antibody-Conjugated Au Nanocages by Two-Photon Microscopy and Inductively Coupled Plasma Mass Spectrometry. Acs Nano 2010;4:35-42.dio:10.1021/nn9 01392m
-
(2010)
Acs Nano
, vol.4
, pp. 35-42
-
-
Au, L.1
Zhang, Q.2
Cobley, C.M.3
Gidding, M.4
Schwartz, A.G.5
Chen, J.Y.6
Xia, Y.N.7
-
73
-
-
70549106853
-
Gold nanocages covered by smart polymers for controlled release with near-infrared light
-
doi:10.1038/ nmat2564
-
Yavuz M S, Cheng Y Y, Chen J Y, Cobley C M, Zhang Q, Rycenga M, Xie J W, Kim C, Song K H, Schwartz A G,Wang L H V, Xia Y N. Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat. Mater. 2009;8:935-939. doi:10.1038/ nmat2564
-
(2009)
Nat. Mater.
, vol.8
, pp. 935-939
-
-
Yavuz, M.S.1
Cheng, Y.Y.2
Chen, J.Y.3
Cobley, C.M.4
Zhang, Q.5
Rycenga, M.6
Xie, J.W.7
Kim, C.8
Song, K.H.9
Schwartz, A.G.10
Wang, L.H.V.11
Xia, Y.N.12
-
74
-
-
54849412078
-
Synthesis and Optical Properties of Au-AgAlloy Nanoclusters with Controlled Composition
-
Sanchez-Ramirez J F, Pal U, Nolasco-Hernandez L,Mendoza-Alvarez J, Pescador-Rojas J A.Synthesis and Optical Properties of Au-AgAlloy Nanoclusters with Controlled Composition. J. Nanomater. 2008;620412.
-
(2008)
J. Nanomater.
, pp. 620412
-
-
Sanchez-Ramirez, J.F.1
Pal, U.2
Nolasco-Hernandez, L.3
Mendoza-Alvarez, J.4
Pescador-Rojas, J.A.5
-
75
-
-
10444268883
-
Composition-controlled synthesis of bimetallic gold-silver nanoparticles
-
doi:10.1021/la048438q
-
Kariuki N N, Luo J, Maye M M, Hassan S A, Menard T, Naslund H R, Lin Y H, Wang C M, Engelhard M H, Composition- controlled synthesis of bimetallic gold-silver nanoparticles. Langmuir. 2004;20: 11240-11246. doi:10.1021/la048438q
-
(2004)
Langmuir
, vol.20
, pp. 11240-11246
-
-
Kariuki, N.N.1
Luo, J.2
Maye, M.M.3
Hassan, S.A.4
Menard, T.5
Naslund, H.R.6
Lin, Y.H.7
Wang, C.M.8
Engelhard, M.H.9
-
76
-
-
0000490032
-
Stable Hydrosols of Metallic and Bimetallic Nanoparticles Immobilized on Imogolite Fibers
-
doi:10.1021/j100041a031
-
Lizmarzan L M, Philipse A P.Stable Hydrosols of Metallic and Bimetallic Nanoparticles Immobilized on Imogolite Fibers. J. Chem. Phys. 1995;99:15120-15128.doi:10.1021/j100041a031
-
(1995)
J. Chem. Phys.
, vol.99
, pp. 15120-15128
-
-
Lizmarzan, L.M.1
Philipse, A.P.2
-
77
-
-
0000515074
-
Dodecanethiol-derivatized Au/Ag bimetallic nanoparticles: TEM, UV/VIS, XPS, and FTIR analysis
-
doi:10.1006/jcis.1998.5812
-
Han S W, Kim Y, Kim K, Dodecanethiol-derivatized Au/Ag bimetallic nanoparticles: TEM, UV/VIS, XPS, and FTIR analysis. J. Coll. Int. Sci. 1998;208: 272-278.doi:10.1006/jcis.1998.5812
-
(1998)
J. Coll. Int. Sci.
, vol.208
, pp. 272-278
-
-
Han, S.W.1
Kim, Y.2
Kim, K.3
-
78
-
-
4143079276
-
Phase transfer of Au-Ag alloy nanoparticles from aqueous medium to an organic solvent:effect of aging of surfactant on the formation of Ag-rich alloy compositions
-
doi:10.1016/j.jcis.2004.05.038
-
Devarajan S, Vimalan B,Sampath S. Phase transfer of Au-Ag alloy nanoparticles from aqueous medium to an organic solvent:effect of aging of surfactant on the formation of Ag-rich alloy compositions. J. Coll. Int. Sci. 2004;278:126-132. doi:10.1016/j.jcis.2004.05.038
-
(2004)
J. Coll. Int. Sci.
, vol.278
, pp. 126-132
-
-
Devarajan, S.1
Vimalan, B.2
Sampath, S.3
-
79
-
-
38349147646
-
Preparation of silver-gold alloy nanoparticles at higher concentration using sodium dodecyl sulfate
-
doi:10.1071/CH07165
-
Pal A, Shah S, Devi S. Preparation of silver-gold alloy nanoparticles at higher concentration using sodium dodecyl sulfate. Aust. J. Chem. 2008;61:66-71.doi:10.1071/CH07165
-
(2008)
Aust. J. Chem.
, vol.61
, pp. 66-71
-
-
Pal, A.1
Shah, S.2
Devi, S.3
-
80
-
-
0035925224
-
A new approach for the formation of alloy nanoparticles: laser synthesis of gold-silver alloy from gold-silver colloidal mixtures
-
doi:10.1039/ b009854j
-
Chen Y H, Yeh C S, A new approach for the formation of alloy nanoparticles: laser synthesis of gold-silver alloy from gold-silver colloidal mixtures. Chem. Commun. 2001;4:371-372. doi:10.1039/ b009854j
-
(2001)
Chem. Commun.
, vol.4
, pp. 371-372
-
-
Chen, Y.H.1
Yeh, C.S.2
-
81
-
-
0035929116
-
Production of Au-Ag alloy nanoparticles by laser ablation of bulk alloys
-
doi:10.1039/b009854j
-
Lee I, Han S W, Kim K. Production of Au-Ag alloy nanoparticles by laser ablation of bulk alloys. Chem. Commun. 2001;18:1782-1783. doi:10.1039/b009854j
-
(2001)
Chem. Commun.
, vol.18
, pp. 1782-1783
-
-
Lee, I.1
Han, S.W.2
Kim, K.3
-
82
-
-
67649268116
-
Pt-Guided Formation of Pt-Ag Alloy Nanoislands on Au Nanorods and Improved Methanol Electro-Oxidation
-
dio:10.1021/ jp9027707
-
He W W, Wu X C, Liu J B, Zhang K, Chu W G, Feng L L, Hu X A, Zhou W Y, Xie S S. Pt-Guided Formation of Pt-Ag Alloy Nanoislands on Au Nanorods and Improved Methanol Electro-Oxidation. J. Phys. Chem. C 2009;113:10505-10510. dio:10.1021/ jp9027707
-
(2009)
J. Phys. Chem. C
, vol.113
, pp. 10505-10510
-
-
He, W.W.1
Wu, X.C.2
Liu, J.B.3
Zhang, K.4
Chu, W.G.5
Feng, L.L.6
Hu, X.A.7
Zhou, W.Y.8
Xie, S.S.9
-
83
-
-
48349133059
-
Propene partial oxidation over Au-Ag Alloy and Ag catalysts using electrochemical oxygen
-
Zemichael F W, Al-Musa A, Cumming I W, Hellgardt K. Propene partial oxidation over Au-Ag Alloy and Ag catalysts using electrochemical oxygen. Solid State Ionics. 2008;179:1401- 1404.
-
(2008)
Solid State Ionics
, vol.179
, pp. 1401-1404
-
-
Zemichael, F.W.1
Al-Musa, A.2
Cumming, I.W.3
Hellgardt, K.4
-
84
-
-
65649143467
-
Photocatalysis in Gold Nanocage Nanoreactors
-
doi:10.1021/jp811014u
-
Yen C W, Mahmoud M A, El-Sayed M A,Photocatalysis in Gold Nanocage Nanoreactors. J. Phys. Chem. A 2009;113:4340-4345. doi:10.1021/jp811014u
-
(2009)
J. Phys. Chem. A
, vol.113
, pp. 4340-4345
-
-
Yen, C.W.1
Mahmoud, M.A.2
El-Sayed, M.A.3
-
85
-
-
0031037501
-
Probing single molecules and single nanoparticles by surface-enhanced Raman scattering
-
doi:10.1126/science.275.5303.1102 1102-1106
-
Nie S M, Emery S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997; 275:1102-1106:1102-1106. doi:10.1126/science.275.5303.1102
-
(1997)
Science
, vol.275
, pp. 1102-1106
-
-
Nie, S.M.1
Emery, S.R.2
-
86
-
-
0033520760
-
Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Agnanocrystals
-
doi:10.1021/ ja992128q
-
Michaels A M, Nirmal M, Brus L E. Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Agnanocrystals. J. Am. Chem. Soc. 1999;121:9932-9939. doi:10.1021/ ja992128q
-
(1999)
J. Am. Chem. Soc.
, vol.121
, pp. 9932-9939
-
-
Michaels, A.M.1
Nirmal, M.2
Brus, L.E.3
-
87
-
-
0032360290
-
Surface-enhanced Raman scattering
-
doi:10.1039/a827241z
-
Campion A, Kambhampati P. Surface-enhanced Raman scattering. Chem. Soc. Rev. 1998;27:241-250. doi:10.1039/a827241z
-
(1998)
Chem. Soc. Rev.
, vol.27
, pp. 241-250
-
-
Campion, A.1
Kambhampati, P.2
-
88
-
-
77954546586
-
Bimetallic Mesoflowers: Region-Specific Overgrowth andSubstrate Dependent Surface-Enhanced Raman Scattering at Single Particle Level
-
doi:10.1021/la904676u
-
Sajanlal P R, Pradeep T. Bimetallic Mesoflowers: Region-Specific Overgrowth andSubstrate Dependent Surface-Enhanced Raman Scattering at Single Particle Level. Langmuir. 2010;26:8901-8907. doi:10.1021/la904676u
-
(2010)
Langmuir
, vol.26
, pp. 8901-8907
-
-
Sajanlal, P.R.1
Pradeep, T.2
-
89
-
-
33746825820
-
Surface-enhanced Raman scattering of silver-gold bimetallic bimetallic nanostructures with hollow interiors
-
doi:10.1063/1.22 16694
-
Wang Y L, Chen H J, Dong S J, Wang E K.Surface-enhanced Raman scattering of silver-gold bimetallic bimetallic nanostructures with hollow interiors. J. Chem. Phys. 2006;125:044710.doi:10.1063/1.22 16694
-
(2006)
J. Chem. Phys.
, vol.125
, pp. 044710
-
-
Wang, Y.L.1
Chen, H.J.2
Dong, S.J.3
Wang, E.K.4
-
90
-
-
67349153354
-
Optical properties and SERS efficiency of tunable gold/silver nanoshells
-
doi:10.1016/j.vibspec.2008.07.011
-
Gellner M, Kustner B, Schlucker S. Optical properties and SERS efficiency of tunable gold/silver nanoshells. Vib. Spectrosc. 2009; 50:43-47.doi:10.1016/j.vibspec.2008.07.011
-
(2009)
Vib. Spectrosc.
, vol.50
, pp. 43-47
-
-
Gellner, M.1
Kustner, B.2
Schlucker, S.3
-
91
-
-
2342471372
-
Bimetallic (Ag)Au nanoparticles prepared by the seed growth method:Twodimensional assembling, characterization by energy dispersive X-ray analysis, X-ray photoelectron spectroscopy, and surface enhanced Raman spectroscopy, and proposed mechanism of growth
-
doi:10.1021/la0302605
-
Srnova-Sloufova I, Vlckova B, Bastl Z, Hasslett T L. Bimetallic (Ag)Au nanoparticles prepared by the seed growth method:Twodimensional assembling, characterization by energy dispersive X-ray analysis, X-ray photoelectron spectroscopy, and surface enhanced Raman spectroscopy, and proposed mechanism of growth. Langmuir 2004; 20:3407-3415.doi:10.1021/la0302605
-
(2004)
Langmuir
, vol.20
, pp. 3407-3415
-
-
Srnova-Sloufova, I.1
Vlckova, B.2
Bastl, Z.3
Hasslett, T.L.4
-
92
-
-
47249156082
-
Hollow gold-silver double-shell nanospheres: Structure, optical absorption, and surface-enhanced Raman scattering
-
doi:10.1021/jp7116714
-
Olson T Y, Schwartzberg A M, Orme C A, Talley C E, O'Connell B, Zhang J Z. Hollow gold-silver double-shell nanospheres: Structure, optical absorption, and surface-enhanced Raman scattering. J. Phys. Chem. C 2008;112:6319-6329.doi:10.1021/jp7116714
-
(2008)
J. Phys. Chem. C.
, vol.112
, pp. 6319-6329
-
-
Olson, T.Y.1
Schwartzberg, A.M.2
Orme, C.A.3
Talley, C.E.4
O'Connell, B.5
Zhang, J.Z.6
|