메뉴 건너뛰기




Volumn 5, Issue 1, 2011, Pages 122-132

On positive solutions to nonlocal fractional and integer-order difference equations

Author keywords

Boundary value problem; Discrete fractional calculus; Nonlocal boundary conditions; Positive solution; Sign changing coeffcients

Indexed keywords


EID: 79953326334     PISSN: 14528630     EISSN: None     Source Type: Journal    
DOI: 10.2298/AADM110111001G     Document Type: Article
Times cited : (43)

References (23)
  • 2
    • 77953564728 scopus 로고    scopus 로고
    • Foundations of nabla fractional calculus on time scales and inequalities
    • G. A. Anastassiou: Foundations of nabla fractional calculus on time scales and inequalities. Comput. Math. Appl., 59 (2010), 3750-3762.
    • (2010) Comput. Math. Appl. , vol.59 , pp. 3750-3762
    • Anastassiou, G.A.1
  • 3
    • 77954861707 scopus 로고    scopus 로고
    • Principles of delta fractional calculus on time scales and in equalities
    • G. A. Anastassiou: Principles of delta fractional calculus on time scales and in equalities. Math. Comput. Modelling, 52 (2010), 556-566.
    • (2010) Math. Comput. Modelling , vol.52 , pp. 556-566
    • Anastassiou, G.A.1
  • 4
    • 74149083825 scopus 로고    scopus 로고
    • Initial value problems in discrete fractional calculus
    • F. M. Atici, P. W. Eloe: Initial value problems in discrete fractional calculus. Proc. Amer. Math. Soc., 137 (2009), 981-989.
    • (2009) Proc. Amer. Math. Soc. , vol.137 , pp. 981-989
    • Atici, F.M.1    Eloe, P.W.2
  • 6
    • 79953286192 scopus 로고    scopus 로고
    • Two-point boundary value problems for finite fractional difference equations
    • doi: 10. 1080/10236190903029241
    • F. M. Atici, P. W. Eloe: Two-point boundary value problems for finite fractional difference equations. J. Difference Equ. Appl., (2010), doi: 10.1080/10236190903029241.
    • (2010) J. Difference Equ. Appl.
    • Atici, F.M.1    Eloe, P.W.2
  • 7
    • 77952557731 scopus 로고    scopus 로고
    • Modeling with fractional difference equations
    • F. M. Atici, S. Sengul: Modeling with fractional difference equations. J. Math. Anal. Appl., 369 (2010), 1-9.
    • (2010) J. Math. Anal. Appl. , vol.369 , pp. 1-9
    • Atici, F.M.1    Sengul, S.2
  • 8
    • 78049333168 scopus 로고    scopus 로고
    • Discrete-time fractional variational problems
    • N. R. O. Bastos et al.: Discrete-time fractional variational problems. Signal Process., 91 (2011), 513-524.
    • (2011) Signal Process. , vol.91 , pp. 513-524
    • Bastos, N.R.O.1
  • 9
    • 79953318713 scopus 로고    scopus 로고
    • Fractional derivatives and integrals on time scales via the inverse generalized Laplace transform
    • N. R. O. Bastos et al.: Fractional derivatives and integrals on time scales via the inverse generalized Laplace transform. Int. J. Math. Comput., 11 (2011), 1-9.
    • (2011) Int. J. Math. Comput. , vol.11 , pp. 1-9
    • Bastos, N.R.O.1
  • 10
    • 78651241495 scopus 로고    scopus 로고
    • Necessary optimality conditions for fractional difference problems of the calculus of variations
    • N. R. O. Bastos et al.: Necessary optimality conditions for fractional difference problems of the calculus of variations. Discrete Cont. Dyn. Syst., 29 (2011), 417-437.
    • (2011) Discrete Cont. Dyn. Syst. , vol.29 , pp. 417-437
    • Bastos, N.R.O.1
  • 11
    • 67349155890 scopus 로고    scopus 로고
    • Boundary value problems for differential equations with fractional order and nonlocal conditions
    • M. Benchohra, S. Hamani, S. K. Ntouyas: Boundary value problems for differential equations with fractional order and nonlocal conditions. Nonlinear Anal., 71 (2009), 2391-2396.
    • (2009) Nonlinear Anal. , vol.71 , pp. 2391-2396
    • Benchohra, M.1    Hamani, S.2    Ntouyas, S.K.3
  • 12
    • 33847653855 scopus 로고    scopus 로고
    • Multiple positive solutions for discrete nonlocal boundary value problems
    • W. S. Cheung, J. Ren, P. J. Y. Wong, D. Zhao: Multiple positive solutions for discrete nonlocal boundary value problems. J. Math. Anal. Appl., 330 (2007), 900-915.
    • (2007) J. Math. Anal. Appl. , vol.330 , pp. 900-915
    • Cheung, W.S.1    Ren, J.2    Wong, P.J.Y.3    Zhao, D.4
  • 13
    • 77953136599 scopus 로고    scopus 로고
    • Continuity of solutions to discrete fractional initial value problems
    • C. S. Goodrich: Continuity of solutions to discrete fractional initial value problems. Comput. Math. Appl., 59 (2010), 3489-3499.
    • (2010) Comput. Math. Appl. , vol.59 , pp. 3489-3499
    • Goodrich, C.S.1
  • 14
    • 78650178926 scopus 로고    scopus 로고
    • Solutions to a discrete right-focal fractional boundary value problem
    • C. S. Goodrich: Solutions to a discrete right-focal fractional boundary value problem. Int. J. Difference Equ., 5 (2010), 195-216.
    • (2010) Int. J. Difference Equ. , vol.5 , pp. 195-216
    • Goodrich, C.S.1
  • 15
    • 78651230726 scopus 로고    scopus 로고
    • Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions
    • C. S. Goodrich: Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions. Comput. Math. Appl., 61 (2011), 191-202.
    • (2011) Comput. Math. Appl. , vol.61 , pp. 191-202
    • Goodrich, C.S.1
  • 16
    • 78651379292 scopus 로고    scopus 로고
    • Existence of a positive solution to a first-order p-Laplacian BVP on a time scale
    • C. S. Goodrich: Existence of a positive solution to a first-order p-Laplacian BVP on a time scale. Nonlinear Anal., 74 (2011), 1926-1936.
    • (2011) Nonlinear Anal. , vol.74 , pp. 1926-1936
    • Goodrich, C.S.1
  • 17
    • 78650170131 scopus 로고    scopus 로고
    • Existence of a positive solution to a system of discrete fractional boundary value problems
    • C. S. Goodrich: Existence of a positive solution to a system of discrete fractional boundary value problems. Appl. Math. Comput., 217 (2011), 4740-4753.
    • (2011) Appl. Math. Comput. , vol.217 , pp. 4740-4753
    • Goodrich, C.S.1
  • 18
    • 79953294826 scopus 로고    scopus 로고
    • On a discrete fractional three-point boundary value problem
    • doi: 10.1080/10236198.2010.503240
    • C. S. Goodrich: On a discrete fractional three-point boundary value problem. J. Difference Equ. Appl., doi: 10.1080/10236198.2010.503240.
    • J. Difference Equ. Appl.
    • Goodrich, C.S.1
  • 19
    • 79951536621 scopus 로고    scopus 로고
    • Some new existence results for fractional difference equations
    • C. S. Goodrich: Some new existence results for fractional difference equations. Int. J. Dyn. Syst. Differ. Equ., 3 (2011), 145-162.
    • (2011) Int. J. Dyn. Syst. Differ. Equ. , vol.3 , pp. 145-162
    • Goodrich, C.S.1
  • 20
    • 33846042078 scopus 로고    scopus 로고
    • Positive solutions of nonlocal boundary value problems: a unified approach
    • G. Infante, J. R. L. Webb: Positive solutions of nonlocal boundary value problems: a unified approach. J. London Math. Soc., 74 (3) (2006), 673-693.
    • (2006) J. London Math. Soc. , vol.74 , Issue.3 , pp. 673-693
    • Infante, G.1    Webb, J.R.L.2
  • 21
    • 3042663324 scopus 로고    scopus 로고
    • Positive solutions of a three-point boundary-value problem on a time scale
    • E. Kaufmann: Positive solutions of a three-point boundary-value problem on a time scale. Electron. J. Differential Equations, (82) 2003, 11 pp.
    • (2003) Electron. J. Differential Equations , vol.100 , Issue.82 , pp. 11
    • Kaufmann, E.1
  • 22
    • 0742306107 scopus 로고    scopus 로고
    • Positive solutions of three-point nonlinear discrete second order boundary value problem
    • R. Ma, Y. Raffoul: Positive solutions of three-point nonlinear discrete second order boundary value problem. J. Difference Equ. Appl., 10 (2004), 129-138.
    • (2004) J. Difference Equ. Appl. , vol.10 , pp. 129-138
    • Ma, R.1    Raffoul, Y.2
  • 23
    • 30444435206 scopus 로고    scopus 로고
    • Multiple positive solutions of four point boundary value problems for finite difference equations
    • Y. Tian, D. Ma, W. Ge: Multiple positive solutions of four point boundary value problems for finite difference equations. J. Difference Equ. Appl., 12 (2006), 57-68.
    • (2006) J. Difference Equ. Appl. , vol.12 , pp. 57-68
    • Tian, Y.1    Ma, D.2    Ge, W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.