-
3
-
-
0004145661
-
-
Lecture Notes in Statistics, Springer Verlag, New York
-
H. Andersson and T. Britton, Stochastic Epidemic Models and Their Statistical Analysis, Lecture Notes in Statistics 151, Springer Verlag, New York, 2000.
-
(2000)
Stochastic Epidemic Models and Their Statistical Analysis
, vol.151
-
-
Andersson, H.1
Britton, T.2
-
4
-
-
0032268351
-
A threshold limit theorem for the stochastic logistic epidemic
-
H. Andersson and B. Djehiche, A threshold limit theorem for the stochastic logistic epidemic, J. Appl. Prob. 35 (1998), 662-670. (Pubitemid 128356773)
-
(1998)
Journal of Applied Probability
, vol.35
, Issue.3
, pp. 662-670
-
-
Andersson, H.1
Djehiche, B.2
-
5
-
-
0033449753
-
An elementary view of Euler's summation formula
-
T.M. Apostol, An elementary view of Euler's summation formula, American Mathematical Monthly, 106, no 5 (1999), 409-418.
-
(1999)
American Mathematical Monthly
, vol.106
, Issue.5
, pp. 409-418
-
-
Apostol, T.M.1
-
6
-
-
33751110243
-
Spectral theory of metastability and extinction in birth-death systems
-
M. Assaf and B. Meerson, Spectral theory of metastability and extinction in birth-death systems, Physical Review Letters, 97 (2006).
-
(2006)
Physical Review Letters
, vol.97
-
-
Assaf, M.1
Meerson, B.2
-
8
-
-
0001663768
-
Quasi-stationary distributions in Markov population processes
-
A. D. Barbour, Quasi-stationary distributions in Markov population processes, Adv. Appl. Prob. 8 (1976), 296-314.
-
(1976)
Adv. Appl. Prob.
, vol.8
, pp. 296-314
-
-
Barbour, A.D.1
-
9
-
-
84925899844
-
Continuous time diffusion models with random duration of interest
-
D. J. Bartholomew, Continuous time diffusion models with random duration of interest, J. Math. Sociol. 4 (1976), 187-199.
-
(1976)
J. Math. Sociol.
, vol.4
, pp. 187-199
-
-
Bartholomew, D.J.1
-
10
-
-
0001892427
-
Deterministic and stochastic models for recurrent epidemics
-
University of Calofornia Press, Berkeley
-
M. S. Bartlett, Deterministic and stochastic models for recurrent epidemics, In: Proceedings of the Third Berkeley Symposium on Mathematics, Statistics and Probability, vol 4, University of Calofornia Press, Berkeley, (1956), 81-109.
-
(1956)
Proceedings of the Third Berkeley Symposium on Mathematics, Statistics and Probability
, vol.4
, pp. 81-109
-
-
Bartlett, M.S.1
-
11
-
-
0001813929
-
On theoretical models for competitive and predatory biological systems
-
M. S. Bartlett, On theoretical models for competitive and predatory biological systems, Biometrika 44 (1957), 27-42.
-
(1957)
Biometrika
, vol.44
, pp. 27-42
-
-
Bartlett, M.S.1
-
12
-
-
0003188313
-
The critical community soze fopr measles in the United States
-
M. S. Bartlett, The critical community soze fopr measles in the United States, J. Roy. Stat. Soc. Ser. A 123 (1960), 37-44.
-
(1960)
J. Roy. Stat. Soc. Ser. A
, vol.123
, pp. 37-44
-
-
Bartlett, M.S.1
-
13
-
-
0001543849
-
A comparison of theoretical and empirical results for some stochastic population models
-
M. S. Bartlett, J. C. Gower, and P. H. Leslie, A comparison of theoretical and empirical results for some stochastic population models, Biometrika 47 (1960), 1-11.
-
(1960)
Biometrika
, vol.47
, pp. 1-11
-
-
Bartlett, M.S.1
Gower, J.C.2
Leslie, P.H.3
-
15
-
-
33846011869
-
A comparison of models for predicting population persistence
-
DOI 10.1016/j.ecolmodel.2006.07.018, PII S0304380006003528
-
B. J. Cairns, J. V. Ross, and T. Taimre, A comparison of models for predicting population persistence, Ecological Modelling 201 (2007), 19-26. (Pubitemid 46054344)
-
(2007)
Ecological Modelling
, vol.201
, Issue.1
, pp. 19-26
-
-
Cairns, B.J.1
Ross, J.V.2
Taimre, T.3
-
16
-
-
0000851843
-
Quasi-stationary distributions of birth-and-death processes
-
J. A. Cavender, Quasi-stationary distributions of birth-and-death processes, Adv. Appl. Prob. 10 (1978), 570-586.
-
(1978)
Adv. Appl. Prob.
, vol.10
, pp. 570-586
-
-
Cavender, J.A.1
-
17
-
-
14644424487
-
-
Springer, London
-
M. F. Chen, Eigenvalues, Inequalities, and Ergodic Theorry, Springer, London, 2005.
-
(2005)
Eigenvalues, Inequalities, and Ergodic Theorry
-
-
Chen, M.F.1
-
18
-
-
0242508316
-
A note on quasi-stationary distributions of birth-death processes and the SIS logistic epidemic
-
DOI 10.1239/jap/1059060909
-
D. Clancy and P. K. Pollett, A note on quasi-stationary distributions of birth-death processes and the SIS logistic epidemic, J. Appl. Prob. 40 (2003), 821-825. (Pubitemid 37374299)
-
(2003)
Journal of Applied Probability
, vol.40
, Issue.3
, pp. 821-825
-
-
Clancy, D.1
Pollett, P.K.2
-
19
-
-
79960921400
-
Approximating the quasi-stationary distribution of the SIS model for endemic infection
-
D. Clancy and S. T. Mendy, Approximating the quasi-stationary distribution of the SIS model for endemic infection, Methodol. Comput. Appl. Probab. (2010).
-
(2010)
Methodol. Comput. Appl. Probab.
-
-
Clancy, D.1
Mendy, S.T.2
-
20
-
-
0005464095
-
The continuity correction
-
D. R. Cox, The continuity correction, Biometrika, 57 No 1 (1970), 217-219.
-
(1970)
Biometrika
, vol.57
, Issue.1
, pp. 217-219
-
-
Cox, D.R.1
-
21
-
-
0001383449
-
On quasi-stationary distributions in absorbing continuous-time finite Markov chains
-
J.N. Darroch and E. Sneta, On quasi-stationary distributions in absorbing continuous-time finite Markov chains, J. Appl Prob. 4 (1967), 192-196.
-
(1967)
J. Appl Prob.
, vol.4
, pp. 192-196
-
-
Darroch, J.N.1
Sneta, E.2
-
23
-
-
0037040147
-
Quasi-stationary distributions for stochastic processes with an absorbing state
-
DOI 10.1088/0305-4470/35/5/303, PII S0305447002304220
-
R. Dickman and R. Vidigal, Quasi-stationary distributions for stochastic processes with an absorbing state, J. Phys. A: Math. Gen. 35 (2002), 1147-1166. (Pubitemid 37026735)
-
(2002)
Journal of Physics A: Mathematical and General
, vol.35
, Issue.5
, pp. 1147-1166
-
-
Dickman, R.1
Vidigal, R.2
-
24
-
-
21844433698
-
Extinction times for birth-death processes: Exact results, continuum asymptotics, and the failure of the Fokker-Planck approximation
-
DOI 10.1137/030602800
-
C.R. Doering, K.V. Sargsyan and L.M. Sander, Extinction times for birth-death processes: Exact results, continuum asymptotics, and the failure of the Fokker-Planck approximation, SIAM J. Multiscale Modeling and Sim. 3 (2005), 283-299. (Pubitemid 40951973)
-
(2005)
Multiscale Modeling and Simulation
, vol.3
, Issue.2
, pp. 283-299
-
-
Doering, C.R.1
Sargsyan, K.V.2
Sander, L.M.3
-
25
-
-
34047113875
-
Critical scaling for the SIS stochastic epidemic
-
R.G. Dolgoarshinnykh and S.P. Lalley, Critical scaling for the SIS stochastic epidemic, J. Appl. Prob., 43 (2006), 892-898.
-
(2006)
J. Appl. Prob.
, vol.43
, pp. 892-898
-
-
Dolgoarshinnykh, R.G.1
Lalley, S.P.2
-
26
-
-
34250593527
-
Die Grundlagen des Volterraschen Theorie des Kampfes ums Dasein in wahrscheinlichkeitstheoretischer Behandlung
-
W. Feller, Die Grundlagen des Volterraschen Theorie des Kampfes ums Dasein in wahrscheinlichkeitstheoretischer Behandlung, Acta Biotheoretica, 5 (1939), 11-40.
-
(1939)
Acta Biotheoretica
, vol.5
, pp. 11-40
-
-
Feller, W.1
-
27
-
-
0001240798
-
Existence of quasi-stationary distributions. A renewal dynamic approach
-
P. Ferrari, H. Kesten, S. Martínez, and P. Picco, Existence of quasi-stationary distributions. A renewal dynamic approach, Ann. Probab. 23 (1995), 501-521.
-
(1995)
Ann. Probab.
, vol.23
, pp. 501-521
-
-
Ferrari, P.1
Kesten, H.2
Martínez, S.3
Picco, P.4
-
28
-
-
0004476491
-
On ramanujan's Q-function
-
P. Flajolet, P. J. Grabner, P. Kirschenhofer, and H. Prodinger On Ramanujan's Q-function J. Comp. Appl. Math. 58 (1995), 103-116.
-
(1995)
J. Comp. Appl. Math.
, vol.58
, pp. 103-116
-
-
Flajolet, P.1
Grabner, P.J.2
Kirschenhofer, P.3
Prodinger, H.4
-
29
-
-
16844377273
-
Paradoxes in the logistic equation?
-
DOI 10.1016/j.ecolmodel.2004.10.009
-
J.-P. Gabriel, F. Saucy, and L.-F. Bersier, Paradoxes in the logistic equation?, Ecological Modelling, 85 (2005), 147-151. (Pubitemid 40483347)
-
(2005)
Ecological Modelling
, vol.185
, Issue.1
, pp. 147-151
-
-
Gabriel, J.-P.1
Saucy, F.2
Bersier, L.-F.3
-
30
-
-
0003392158
-
-
Springer Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong, Barcelona, Budapest
-
C. W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences, Springer Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong, Barcelona, Budapest, 1985.
-
(1985)
Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences
-
-
Gardiner, C.W.1
-
31
-
-
0032528857
-
Stochastic epidemics: The expected duration of the endemic period in higher dimensional models
-
DOI 10.1016/S0025-5564(98)10020-2, PII S0025556498100202
-
J. Grasman, Stochastic epidemics: The expected duration of the endemic period in higher dimensional models, Math. Biosci. 152 (1998), 13-27. (Pubitemid 28396972)
-
(1998)
Mathematical Biosciences
, vol.152
, Issue.1
, pp. 13-27
-
-
Grasman, J.1
-
32
-
-
0000829680
-
Contact interactions on a lattice
-
T. E. Harris, Contact interactions on a lattice, Ann. Prob. 2, 969-988, 1974.
-
(1974)
Ann. Prob.
, vol.2
, pp. 969-988
-
-
Harris, T.E.1
-
35
-
-
0001697963
-
Stochastic processes and population growth
-
D. G. Kendall, Stochastic processes and population growth, J. Roy. Stat. Soc. Series B 11, 230-264, 1949.
-
(1949)
J. Roy. Stat. Soc. Series B
, vol.11
, pp. 230-264
-
-
Kendall, D.G.1
-
37
-
-
0013673007
-
Some results for quasi-stationary distributions of birth-death processes
-
M. Kijima and E. Seneta, Some Results for Quasi-Stationary Distributions of Birth-Death Processes, J. Appl. Prob. 28 No. 3 (1991), 503-511.
-
(1991)
J. Appl. Prob.
, vol.28
, Issue.3
, pp. 503-511
-
-
Kijima, M.1
Seneta, E.2
-
39
-
-
0000311552
-
On the extinction of the SIS stochastic logistic epidemic
-
R. J. Kryscio and C. Lefèvre, On the extinction of the SIS stochastic logistic epidemic, J. Appl. Prob. 27 (1989), 685-694.
-
(1989)
J. Appl. Prob.
, vol.27
, pp. 685-694
-
-
Kryscio, R.J.1
Lefèvre, C.2
-
40
-
-
0029839711
-
On approximating the moments of the equilibrium distribution of a stochastic logistic model
-
J.H. Matis and T.R. Kiffe, On approximating the moments of the equilibrium distribution of a stochastic logistic model, Biometrics 52 No 3 (1996), 980-991. (Pubitemid 26296075)
-
(1996)
Biometrics
, vol.52
, Issue.3
, pp. 980-991
-
-
Matis, J.H.1
Kiffe, T.R.2
-
42
-
-
0026360184
-
On the quasi-stationary distribution of the Ross malaria model
-
DOI 10.1016/0025-5564(91)90004-3
-
I. Nåsell, On the quasi-stationary distribution of the Ross malaria model, Math. Biosci. 107 No 2 (1991), 187-207. (Pubitemid 23396929)
-
(1991)
Mathematical Biosciences
, vol.107
, Issue.2
, pp. 187-207
-
-
Nasell, I.1
-
43
-
-
0002242439
-
The threshold concept in stochastic epidemic and endemic models
-
(D. Mollison, ed.), Publications of the Newton Institute, Cambridge University Press, Cambridge
-
I. Nåsell, The threshold concept in stochastic epidemic and endemic models, In Epidemic Models: Their Structure and Relation to Data (D. Mollison, ed.), Publications of the Newton Institute, Cambridge University Press, Cambridge, 1995, 71-83.
-
(1995)
Epidemic Models: Their Structure and Relation to Data
, pp. 71-83
-
-
Nasell, I.1
-
44
-
-
0000635179
-
The quasi-stationary distribution of the closed endemic sis model
-
I. Nåsell, The quasi-stationary distribution of the closed endemic SIS model, Adv. Appl. Prob. 28 (1996), 895-932. (Pubitemid 126499161)
-
(1996)
Advances in Applied Probability
, vol.28
, Issue.3
, pp. 895-932
-
-
Nasell, I.1
-
45
-
-
2542509066
-
On the quasi-stationary distribution of the stochastic logistic epidemic
-
DOI 10.1016/S0025-5564(98)10059-7, PII S0025556498100597
-
I. Nåsell, On the quasi-stationary distribution of the stochastic logistic epidemic,Math. Biosci. 156 (1999a), 21-40. (Pubitemid 29157684)
-
(1999)
Mathematical Biosciences
, vol.156
, Issue.1-2
, pp. 21-40
-
-
Nasell, I.1
-
46
-
-
0033475339
-
On the time to extinction in recurrent epidemics
-
I. Nåsell, On the time to extinction in recurrent epidemics, J. Roy. Statist. Soc. Series B 61 (1999b), 309-330.
-
(1999)
J. Roy. Statist. Soc. Series B
, vol.61
, pp. 309-330
-
-
Nasell, I.1
-
47
-
-
0035822368
-
Extinction and quasi-stationarity in the verhulst logistic model
-
DOI 10.1006/jtbi.2001.2328
-
I. Nåsell, Extinction and quasi-stationarity in the Verhulst logistic model, J. Theor. Biol. 211 (2001), 11-27. (Pubitemid 32619945)
-
(2001)
Journal of Theoretical Biology
, vol.211
, Issue.1
, pp. 11-27
-
-
Nasell, I.1
-
48
-
-
24544434555
-
Endemicity, persistence, and quasi-stationarity
-
(C Castillo-Chavez, S. Blower, P. van den Driessche, D. Kirschner, A. Yakubu, eds.), The IMA Volumes in Mathematics and its Applications, Springer Verlag, New York
-
I. Nåsell, Endemicity, persistence, and quasi-stationarity, Mathematical Approaches for Emerging and Reemerging Infectious Diseases, (C Castillo-Chavez, S. Blower, P. van den Driessche, D. Kirschner, A. Yakubu, eds.), The IMA Volumes in Mathematics and its Applications, Volume 125, Springer Verlag, New York, 2002, 199-227.
-
(2002)
Mathematical Approaches for Emerging and Reemerging Infectious Diseases
, vol.125
, pp. 199-227
-
-
Nasell, I.1
-
49
-
-
17944394670
-
Moment closure and the stochastic logistic model
-
DOI 10.1016/S0040-5809(02)00060-6
-
I. Nåsell, Moment closure and the stochastic logistic model, Theor. Pop. Biol. 63 (2003) 159-168. (Pubitemid 38042776)
-
(2003)
Theoretical Population Biology
, vol.63
, Issue.2
, pp. 159-168
-
-
Nasell, I.1
-
50
-
-
16244363078
-
A new look at the critical community size for childhood infections
-
DOI 10.1016/j.tpb.2005.01.002
-
I. Nåsell, A new look at the critical community size for childhood infections, Theor. Pop. Biol. 67 (2005) 203-216. (Pubitemid 40451539)
-
(2005)
Theoretical Population Biology
, vol.67
, Issue.3
, pp. 203-216
-
-
Nasell, I.1
-
51
-
-
1242277202
-
Extinction times and moment closure in the stochastic logistic process
-
DOI 10.1016/j.tpb.2003.10.003
-
T.J. Newman and J-B Ferdy and C Quince, Extinction times and moment closure in the stochastic logistic process, Theor. Pop. Biol. 65 (2004), 115-126. (Pubitemid 38215110)
-
(2004)
Theoretical Population Biology
, vol.65
, Issue.2
, pp. 115-126
-
-
Newman, T.J.1
Ferdy, J.-B.2
Quince, C.3
-
53
-
-
0001630503
-
On the distribution of the time to extinction in the stochastic logistic ppopulation model
-
R. H. Norden, On the distribution of the time to extinction in the stochastic logistic ppopulation model, Adv. Appl. Prob. 14 (1982), 687-708.
-
(1982)
Adv. Appl. Prob.
, vol.14
, pp. 687-708
-
-
Norden, R.H.1
-
54
-
-
0004074709
-
-
Academic Press, New York, San Fransisco, London
-
F. W. J. Olver, Asymptotics and Special Functions, Academic Press, New York, San Fransisco, London, 1974.
-
(1974)
Asymptotics and Special Functions
-
-
Olver, F.W.J.1
-
55
-
-
77954499023
-
-
F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, eds., NIST Handbook of Mathematical Functions, http://dlmf.nist.gov, 2010.
-
(2010)
NIST Handbook of Mathematical Functions
-
-
Olver, F.W.J.1
Lozier, D.W.2
Boisvert, R.F.3
Clark, C.W.4
-
56
-
-
0001596101
-
Stochastic theory of nonlinear rate processes with multiple stationary states
-
I. Oppenheim, K. E. Shuler, and G. H. Weiss, Stochastic theory of nonlinear rate processes with multiple stationary states, Physica 88A (1977), 191-214.
-
(1977)
Physica
, vol.88 A
, pp. 191-214
-
-
Oppenheim, I.1
Shuler, K.E.2
Weiss, G.H.3
-
57
-
-
0035528749
-
The quasistationary distribution of the stochastic logistic model
-
DOI 10.1239/jap/1011994180
-
O. Ovaskainen, The quasistationary distribution of the stochastic logistic model, J.Appl. Prob., 38 (2001), 898-907. (Pubitemid 33390105)
-
(2001)
Journal of Applied Probability
, vol.38
, Issue.4
, pp. 898-907
-
-
Ovaskainen, O.1
-
58
-
-
0000054180
-
On the rate of growth of the population of the United States since 1790 and its mathematical representation
-
L. Pearl and L. J. Reed, On the rate of growth of the population of the United States since 1790 and its mathematical representation, Proc. Natl. Acad. of Sci. USA 6, 275-288, 1920.
-
(1920)
Proc. Natl. Acad. of Sci. USA
, vol.6
, pp. 275-288
-
-
Pearl, L.1
Reed, L.J.2
-
59
-
-
0001604194
-
Reversibility, invariance, and μ-invariance
-
P. K. Pollett, Reversibility, invariance, and μ-invariance, Adv. Appl. Prob. 20 (1988), 600-621.
-
(1988)
Adv. Appl. Prob.
, vol.20
, pp. 600-621
-
-
Pollett, P.K.1
-
60
-
-
38249006171
-
The generalized Kolmogorov criterion
-
P. K. Pollett, The generalized Kolmogorov criterion, Stoch. Proc Appl. 33 (1989), 29-44.
-
(1989)
Stoch. Proc Appl.
, vol.33
, pp. 29-44
-
-
Pollett, P.K.1
-
62
-
-
0000195470
-
Discussion on symposium on stochastic processes
-
B. J. Prendiville, Discussion on symposium on stochastic processes, J. Roy. Stat. Soc. Ser. B 11, 273, 1949.
-
(1949)
J. Roy. Stat. Soc. Ser. B
, vol.11
, pp. 273
-
-
Prendiville, B.J.1
-
65
-
-
0001802759
-
Stochastic population theory: Birth and death processes
-
(Hallam & Levin, eds.), Berlin: Springer Verlag
-
L. M. Ricciardi, Stochastic population theory: birth and death processes, Mathematical Ecology, an Introduction (Hallam & Levin, eds.) 17, 155-190, 1980, Berlin: Springer Verlag.
-
(1980)
Mathematical Ecology, an Introduction
, vol.17
, pp. 155-190
-
-
Ricciardi, L.M.1
-
67
-
-
0003046508
-
Quasi-stationary behavior in the random walk with continuous time
-
E. Seneta, Quasi-stationary behavior in the random walk with continuous time, Austr. J. Statist. 8 (1966), 92-98.
-
(1966)
Austr. J. Statist.
, vol.8
, pp. 92-98
-
-
Seneta, E.1
-
68
-
-
34547683508
-
A derivative matching approach to moment closure for the stochastic logistic model
-
DOI 10.1007/s11538-007-9198-9
-
A. Singh and J.P. Hespanha, A derivative matching approach to moment closure for the stochastic logistic model, Bull. Math. Biol. 69 no6 (2007), 1909-1925. (Pubitemid 47222244)
-
(2007)
Bulletin of Mathematical Biology
, vol.69
, Issue.6
, pp. 1909-1925
-
-
Singh, A.1
Hespanha, J.P.2
-
69
-
-
34548038623
-
Computable bounds for the decay parameter of a birth-death process
-
D. Sirl, H. Zhang, and P. Pollett, Computable bounds for the decay parameter of a birth-death process, J. Appl. Prob. 44 (2007), 476-491.
-
(2007)
J. Appl. Prob.
, vol.44
, pp. 476-491
-
-
Sirl, D.1
Zhang, H.2
Pollett, P.3
-
70
-
-
0002004123
-
Note on evolutionary processes
-
M. Takashima, Note on evolutionary processes, Bull. Math. Stat. 7, 18-24, 1957.
-
(1957)
Bull. Math. Stat.
, vol.7
, pp. 18-24
-
-
Takashima, M.1
-
72
-
-
0036287783
-
Analysis of logistic growth models
-
DOI 10.1016/S0025-5564(02)00096-2, PII S0025556402000962
-
A. Tsoularis and J. Wallace, Analysis of logistic growth models, Math. Biosci. 179 (2002), 21-55. (Pubitemid 34686426)
-
(2002)
Mathematical Biosciences
, vol.179
, Issue.1
, pp. 21-55
-
-
Tsoularis, A.1
Wallace, J.2
-
73
-
-
0000381122
-
Quasi-stationary distributions and convergence to quasi-stationarity of birthdeath processes
-
E. A. van Doorn, Quasi-stationary distributions and convergence to quasi-stationarity of birthdeath processes, Adv. Appl. Prob. 23 (1991), 683-700.
-
(1991)
Adv. Appl. Prob.
, vol.23
, pp. 683-700
-
-
Van Doorn, E.A.1
-
74
-
-
0001119103
-
Notice sur la loi que la population suit dans son accroisement
-
P. F. Verhulst, Notice sur la loi que la population suit dans son accroisement, Corr. Math. Phys. X, 113-121, 1838.
-
(1838)
Corr. Math. Phys.
, vol.10
, pp. 113-121
-
-
Verhulst, P.F.1
-
76
-
-
0002618815
-
On the asymptotic behavior of the stochastic and deterministic models of an epidemic
-
G. H. Weiss and M. Dishon, On the asymptotic behavior of the stochastic and deterministic models of an epidemic, Math. Biosci. 11 (1971), 261-265.
-
(1971)
Math. Biosci.
, vol.11
, pp. 261-265
-
-
Weiss, G.H.1
Dishon, M.2
-
77
-
-
0001637131
-
On the use of the normal approximation in the treatment of stochastic processes
-
P. Whittle, On the use of the normal approximation in the treatment of stochastic processes, J. Roy. Stat. Soc. Ser B 19, 268-281, 1957.
-
(1957)
J. Roy. Stat. Soc. Ser B
, vol.19
, pp. 268-281
-
-
Whittle, P.1
-
78
-
-
0001694745
-
Certain limit theorems of the theory of branching processes (in Russian)
-
A. M. Yaglom, Certain limit theorems of the theory of branching processes (in Russian), Dokl. Akad. Nauk SSSR 56 (1947), 795-798.
-
(1947)
Dokl. Akad. Nauk SSSR
, vol.56
, pp. 795-798
-
-
Yaglom, A.M.1
|