메뉴 건너뛰기




Volumn 152, Issue 1, 1998, Pages 13-27

Stochastic epidemics: The expected duration of the endemic period in higher dimensional models

Author keywords

[No Author keywords available]

Indexed keywords

EPIDEMIC; INFECTIOUS DISEASE; MIGRATION; MODELING;

EID: 0032528857     PISSN: 00255564     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0025-5564(98)10020-2     Document Type: Article
Times cited : (30)

References (14)
  • 1
    • 0002736422 scopus 로고
    • Some problems in the theory of infectious disease transmission and control
    • in: D. Mollison (Eds.), Cambridge University, Cambridge, p.
    • K. Dietz, Some problems in the theory of infectious disease transmission and control, in: D. Mollison (Eds.), Epidemic Models, Cambridge University, Cambridge, 1995, p. 3.
    • (1995) Epidemic Models , pp. 3
    • Dietz, K.1
  • 5
    • 0029175103 scopus 로고
    • Stochastic epidemics: Major outbreaks and the duration of the endemic period
    • Van Herwaarden O.A., Grasman J. Stochastic epidemics: major outbreaks and the duration of the endemic period. J. Math. Biol. 33:1995;581.
    • (1995) J. Math. Biol. , vol.33 , pp. 581
    • Van Herwaarden, O.A.1    Grasman, J.2
  • 6
    • 0031204180 scopus 로고    scopus 로고
    • Stochastic epidemics: The probability of extinction of an infectious disease at the end of a major outbreak
    • Van Herwaarden O.A. Stochastic epidemics: the probability of extinction of an infectious disease at the end of a major outbreak. J. Math. Biol. 35:1997;793.
    • (1997) J. Math. Biol. , vol.35 , pp. 793
    • Van Herwaarden, O.A.1
  • 7
    • 0001861946 scopus 로고    scopus 로고
    • The expected extinction time of a population within a system of interacting biological populations
    • Grasman J. The expected extinction time of a population within a system of interacting biological populations. Bull. Math. Biol. 58:1996;555.
    • (1996) Bull. Math. Biol. , vol.58 , pp. 555
    • Grasman, J.1
  • 8
    • 0000830143 scopus 로고
    • An asymptotic solution to a two-dimensional exit problem arising in population dynamics
    • Roozen H. An asymptotic solution to a two-dimensional exit problem arising in population dynamics. SIAM J. Appl. Math. 49:1989;1793.
    • (1989) SIAM J. Appl. Math. , vol.49 , pp. 1793
    • Roozen, H.1
  • 12
    • 0009320567 scopus 로고    scopus 로고
    • Stochastic models for the eradication of Poliomyelitis: Minimum population size for polio virus persistence
    • in: V. Isham, G. Medley (Eds.), Cambridge University, cambridge
    • M. Eichner, K.P. Hadeler, K. Dietz, Stochastic models for the eradication of Poliomyelitis: Minimum population size for polio virus persistence, in: V. Isham, G. Medley (Eds.), Models for Infectious Human Diseases, Cambridge University, cambridge, 1996.
    • (1996) Models for Infectious Human Diseases
    • Eichner, M.1    Hadeler, K.P.2    Dietz, K.3
  • 13
    • 0003188313 scopus 로고
    • The critical community size of measles in the United States
    • Bartlett M.S. The critical community size of measles in the United States. J. Roy. Stat. Soc. A. 123:1960;37.
    • (1960) J. Roy. Stat. Soc. a , vol.123 , pp. 37
    • Bartlett, M.S.1
  • 14
    • 0027949856 scopus 로고
    • An analytical model of plant virus disease dynamics with roguing and replanting
    • Chan M.-S., Jeger M.J. An analytical model of plant virus disease dynamics with roguing and replanting. J. Appl. Ecol. 31:1994;413.
    • (1994) J. Appl. Ecol. , vol.31 , pp. 413
    • Chan, M.-S.1    Jeger, M.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.