-
1
-
-
0002736422
-
Some problems in the theory of infectious disease transmission and control
-
in: D. Mollison (Eds.), Cambridge University, Cambridge, p.
-
K. Dietz, Some problems in the theory of infectious disease transmission and control, in: D. Mollison (Eds.), Epidemic Models, Cambridge University, Cambridge, 1995, p. 3.
-
(1995)
Epidemic Models
, pp. 3
-
-
Dietz, K.1
-
4
-
-
0010280004
-
An algorithmic study of S-I-R stochastic epidemic models
-
in: C.C. Heyde, Yu.V. Prohorov, R. Pyke, S.T. Rachev (Eds.), p.
-
M.F. Neuts, J.-M. Li, An algorithmic study of S-I-R stochastic epidemic models, in: C.C. Heyde, Yu.V. Prohorov, R. Pyke, S.T. Rachev (Eds.), Athens Conference on Applied Probability and Times Series, vol. I: Applied Probability, Springer Lecture Notes in Statistics, vol. 114, 1996, p. 295.
-
(1996)
Athens Conference on Applied Probability and Times Series, Vol. I: Applied Probability, Springer Lecture Notes in Statistics
, vol.114
, pp. 295
-
-
Neuts, M.F.1
Li, J.-M.2
-
5
-
-
0029175103
-
Stochastic epidemics: Major outbreaks and the duration of the endemic period
-
Van Herwaarden O.A., Grasman J. Stochastic epidemics: major outbreaks and the duration of the endemic period. J. Math. Biol. 33:1995;581.
-
(1995)
J. Math. Biol.
, vol.33
, pp. 581
-
-
Van Herwaarden, O.A.1
Grasman, J.2
-
6
-
-
0031204180
-
Stochastic epidemics: The probability of extinction of an infectious disease at the end of a major outbreak
-
Van Herwaarden O.A. Stochastic epidemics: the probability of extinction of an infectious disease at the end of a major outbreak. J. Math. Biol. 35:1997;793.
-
(1997)
J. Math. Biol.
, vol.35
, pp. 793
-
-
Van Herwaarden, O.A.1
-
7
-
-
0001861946
-
The expected extinction time of a population within a system of interacting biological populations
-
Grasman J. The expected extinction time of a population within a system of interacting biological populations. Bull. Math. Biol. 58:1996;555.
-
(1996)
Bull. Math. Biol.
, vol.58
, pp. 555
-
-
Grasman, J.1
-
8
-
-
0000830143
-
An asymptotic solution to a two-dimensional exit problem arising in population dynamics
-
Roozen H. An asymptotic solution to a two-dimensional exit problem arising in population dynamics. SIAM J. Appl. Math. 49:1989;1793.
-
(1989)
SIAM J. Appl. Math.
, vol.49
, pp. 1793
-
-
Roozen, H.1
-
12
-
-
0009320567
-
Stochastic models for the eradication of Poliomyelitis: Minimum population size for polio virus persistence
-
in: V. Isham, G. Medley (Eds.), Cambridge University, cambridge
-
M. Eichner, K.P. Hadeler, K. Dietz, Stochastic models for the eradication of Poliomyelitis: Minimum population size for polio virus persistence, in: V. Isham, G. Medley (Eds.), Models for Infectious Human Diseases, Cambridge University, cambridge, 1996.
-
(1996)
Models for Infectious Human Diseases
-
-
Eichner, M.1
Hadeler, K.P.2
Dietz, K.3
-
13
-
-
0003188313
-
The critical community size of measles in the United States
-
Bartlett M.S. The critical community size of measles in the United States. J. Roy. Stat. Soc. A. 123:1960;37.
-
(1960)
J. Roy. Stat. Soc. a
, vol.123
, pp. 37
-
-
Bartlett, M.S.1
-
14
-
-
0027949856
-
An analytical model of plant virus disease dynamics with roguing and replanting
-
Chan M.-S., Jeger M.J. An analytical model of plant virus disease dynamics with roguing and replanting. J. Appl. Ecol. 31:1994;413.
-
(1994)
J. Appl. Ecol.
, vol.31
, pp. 413
-
-
Chan, M.-S.1
Jeger, M.J.2
|