-
2
-
-
0001566894
-
Application of Stieltjes theory for S-fractions to birth and death processes
-
BORDES, G. AND ROEHNER, B. (1983). Application of Stieltjes theory for S-fractions to birth and death processes. Adv. Appl. Prob. 15, 507-530.
-
(1983)
Adv. Appl. Prob
, vol.15
, pp. 507-530
-
-
BORDES, G.1
ROEHNER, B.2
-
3
-
-
0034701978
-
Approximations of quasi-stationary distributions for Markov chains
-
BREYER, L. A. AND HART, A. G. (2000), Approximations of quasi-stationary distributions for Markov chains. Math. Comput. Modelling 31, 69-79.
-
(2000)
Math. Comput. Modelling
, vol.31
, pp. 69-79
-
-
BREYER, L.A.1
HART, A.G.2
-
4
-
-
11244343202
-
On exponential ergodicity and spectral structure for birth-death processes. I
-
CALLAERT, H. AND KEILSON, J. (1973). On exponential ergodicity and spectral structure for birth-death processes. I. Stoch. Process. Appl. 1, 187-216.
-
(1973)
Stoch. Process. Appl
, vol.1
, pp. 187-216
-
-
CALLAERT, H.1
KEILSON, J.2
-
5
-
-
11244320782
-
On exponential ergodicity and spectral structure for birth-death processes. II
-
CALLAERT, H. AND KEILSON, J. (1973). On exponential ergodicity and spectral structure for birth-death processes. II. Stoch. Process. Appl. 1, 217-235.
-
(1973)
Stoch. Process. Appl
, vol.1
, pp. 217-235
-
-
CALLAERT, H.1
KEILSON, J.2
-
7
-
-
0000699604
-
Estimation of spectral gap for Markov chains
-
CHEN, M.-F. (1996). Estimation of spectral gap for Markov chains. Acta. Math. Sinica New Ser. 12, 337-360.
-
(1996)
Acta. Math. Sinica New Ser
, vol.12
, pp. 337-360
-
-
CHEN, M.-F.1
-
8
-
-
0004828917
-
Explicit bounds of the first eigenvalue
-
CHEN, M.-F. (2000). Explicit bounds of the first eigenvalue. Sci. China Ser. A 43, 1051-1059.
-
(2000)
Sci. China Ser. A
, vol.43
, pp. 1051-1059
-
-
CHEN, M.-F.1
-
9
-
-
52549104564
-
Variational formulas and approximation theorems for the first eigenvalue in dimension one
-
CHEN, M.-F. (2001). Variational formulas and approximation theorems for the first eigenvalue in dimension one. Sci. China Ser. A 44, 409-418.
-
(2001)
Sci. China Ser. A
, vol.44
, pp. 409-418
-
-
CHEN, M.-F.1
-
11
-
-
0001383449
-
On quasi-stationary distributions in absorbing continuous-time finite Markov chains
-
DARROCH, J. N. AND SENETA, E. (1967). On quasi-stationary distributions in absorbing continuous-time finite Markov chains. J. Appl. Prob. 4, 192-196.
-
(1967)
J. Appl. Prob
, vol.4
, pp. 192-196
-
-
DARROCH, J.N.1
SENETA, E.2
-
12
-
-
18444402697
-
The limiting behavior of transient birth and death processes conditioned on survival
-
GOOD, P. (1968). The limiting behavior of transient birth and death processes conditioned on survival. J. Austral. Math. Soc. 8, 716-722.
-
(1968)
J. Austral. Math. Soc
, vol.8
, pp. 716-722
-
-
GOOD, P.1
-
13
-
-
34548019314
-
Calculation of the spectral ergodicity exponent for the birth and death process
-
KARTASHOV, N. V. (2000). Calculation of the spectral ergodicity exponent for the birth and death process. Ukrainian Math. J. 52, 1018-1028.
-
(2000)
Ukrainian Math. J
, vol.52
, pp. 1018-1028
-
-
KARTASHOV, N.V.1
-
14
-
-
21144472761
-
Evaluation of the decay parameter for some specialized birth-death processes
-
KIJIMA, M. (1992). Evaluation of the decay parameter for some specialized birth-death processes, J. Appl. Prob. 29, 781-791.
-
(1992)
J. Appl. Prob
, vol.29
, pp. 781-791
-
-
KIJIMA, M.1
-
15
-
-
84960569835
-
The exponential decay of Markov transition probabilities
-
KINGMAN, J. F. C. (1963), The exponential decay of Markov transition probabilities. Proc. London Math. Soc. (3) 13, 337-358.
-
(1963)
Proc. London Math. Soc. (3)
, vol.13
, pp. 337-358
-
-
KINGMAN, J.F.C.1
-
16
-
-
33750606874
-
Convergence rates in strong ergodicity for Markov processes
-
MAO, Y.-H. (2006). Convergence rates in strong ergodicity for Markov processes. Stoch. Process. Appl. 116, 1964-1976.
-
(2006)
Stoch. Process. Appl
, vol.116
, pp. 1964-1976
-
-
MAO, Y.-H.1
-
17
-
-
0000635179
-
The quasi-stationary distribution of the closed endemic SIS model
-
NÅSELL, I. (1996). The quasi-stationary distribution of the closed endemic SIS model. Adv. Appl. Prob. 28, 895-932.
-
(1996)
Adv. Appl. Prob
, vol.28
, pp. 895-932
-
-
NÅSELL, I.1
-
18
-
-
2542509066
-
On the quasi-stationary distribution of the stochastic logistic epidemic
-
NÅSELL, I. (1999). On the quasi-stationary distribution of the stochastic logistic epidemic, Math. Biosci. 156, 21-40.
-
(1999)
Math. Biosci
, vol.156
, pp. 21-40
-
-
NÅSELL, I.1
-
19
-
-
0035822368
-
Extinction and quasi-stationarity in the Verhulst logistic model
-
NÅSELL, I. (2001). Extinction and quasi-stationarity in the Verhulst logistic model. J. Theoret. Biol. 211, 11-27.
-
(2001)
J. Theoret. Biol
, vol.211
, pp. 11-27
-
-
NÅSELL, I.1
-
20
-
-
0013675615
-
The determination of quasistationary distributions directly from the transition rates of an absorbing Markov chain
-
POLLETT, P. K. (1995). The determination of quasistationary distributions directly from the transition rates of an absorbing Markov chain. Math. Comput. Modelling 22, 279-287.
-
(1995)
Math. Comput. Modelling
, vol.22
, pp. 279-287
-
-
POLLETT, P.K.1
-
21
-
-
0002855907
-
Denumerable Markov processes and the associated contraction semigroups on l
-
REUTER, G. E. H. (1957). Denumerable Markov processes and the associated contraction semigroups on l. Acta Math. 97, 1-46.
-
(1957)
Acta Math
, vol.97
, pp. 1-46
-
-
REUTER, G.E.H.1
-
22
-
-
0020194952
-
Solving the birth and death processes with quadratic asymptotically symmetric transition rates
-
ROEHNER, B. AND VALENT, G. (1982). Solving the birth and death processes with quadratic asymptotically symmetric transition rates. SIAM J. Appl. Math. 42, 1020-1046.
-
(1982)
SIAM J. Appl. Math
, vol.42
, pp. 1020-1046
-
-
ROEHNER, B.1
VALENT, G.2
-
23
-
-
0003046508
-
Quasi-stationary behaviour in the random walk with continuous time
-
SENETA, E. (1966). Quasi-stationary behaviour in the random walk with continuous time. Austral. J. Statist. 8, 92-98.
-
(1966)
Austral. J. Statist
, vol.8
, pp. 92-98
-
-
SENETA, E.1
-
24
-
-
0013437873
-
Criteria for ergodicity, exponential ergodicity and strong ergodicity of Markov processes
-
TWEEDIE, R. L. (1981). Criteria for ergodicity, exponential ergodicity and strong ergodicity of Markov processes. J. Appl. Prob. 18, 122-130.
-
(1981)
J. Appl. Prob
, vol.18
, pp. 122-130
-
-
TWEEDIE, R.L.1
-
25
-
-
0000783136
-
Conditions for exponential ergodicity and bounds for the decay parameter of a birth-death process
-
VAN DOORN, E. A. (1985). Conditions for exponential ergodicity and bounds for the decay parameter of a birth-death process. Adv. Appl. Prob. 17, 514-530.
-
(1985)
Adv. Appl. Prob
, vol.17
, pp. 514-530
-
-
VAN DOORN, E.A.1
-
26
-
-
0000381122
-
Quasi-stationary distributions and convergence to quasi-stationarity of birth-death processes
-
VAN DOORN, E. A. (1991). Quasi-stationary distributions and convergence to quasi-stationarity of birth-death processes. Adv. Appl. Prob. 23, 683-700.
-
(1991)
Adv. Appl. Prob
, vol.23
, pp. 683-700
-
-
VAN DOORN, E.A.1
-
27
-
-
0038313575
-
Representations for the rate of convergence of birth-death processes
-
VAN DOORN, E. A. (2002). Representations for the rate of convergence of birth-death processes. Theory Prob. Math. Statist. 65, 37-43.
-
(2002)
Theory Prob. Math. Statist
, vol.65
, pp. 37-43
-
-
VAN DOORN, E.A.1
-
28
-
-
0000161729
-
Conditioned Markov processes
-
WAUGH, W. A. O'N. (1958). Conditioned Markov processes. Biometrika 45, 241-249.
-
(1958)
Biometrika
, vol.45
, pp. 241-249
-
-
WAUGH, W.1
O'N, A.2
-
29
-
-
0001800918
-
Some estimates of the rate of convergence for birth and death processes
-
ZEǏFMAN, A. I. (1991). Some estimates of the rate of convergence for birth and death processes. J. Appl. Prob. 28, 268-277.
-
(1991)
J. Appl. Prob
, vol.28
, pp. 268-277
-
-
ZEǏFMAN, A.I.1
-
30
-
-
0041908471
-
Strong ergodicity of monotone transition functions
-
ZHANG, H., CHEN, A., LIN, X. AND HOU, Z. (2001). Strong ergodicity of monotone transition functions. Statist. Prob. Lett. 55, 63-69.
-
(2001)
Statist. Prob. Lett
, vol.55
, pp. 63-69
-
-
ZHANG, H.1
CHEN, A.2
LIN, X.3
HOU, Z.4
|