-
1
-
-
14544281094
-
Gaussian limits for random measures in geometric probability
-
Yu. Baryshnikov and J. E. Yukich, Gaussian limits for random measures in geometric probability, Ann. Appl. Probab. 15, 1A (2005), pp. 213-253.
-
(2005)
Ann. Appl. Probab.
, vol.15
, Issue.1 A
, pp. 213-253
-
-
Baryshnikov, Y.1
Yukich, J.E.2
-
2
-
-
0031067218
-
A central limit theorem for linear Kolmogorov's birth-growth models
-
S. N. Chiu, A central limit theorem for linear Kolmogorov's birth-growth models, Stochastic Process. Appl. 66 (1997), pp. 97-106.
-
(1997)
Stochastic Process. Appl.
, vol.66
, pp. 97-106
-
-
Chiu, S.N.1
-
3
-
-
0036065613
-
A regularity condition and strong limit theorems for linear birth-growth processes
-
S. N. Chiu and H. Y. Lee, A regularity condition and strong limit theorems for linear birth-growth processes, Math. Nachr. 241 (2002), pp. 21-27.
-
(2002)
Math. Nachr.
, vol.241
, pp. 21-27
-
-
Chiu, S.N.1
Lee, H.Y.2
-
4
-
-
0031478723
-
Central limit theory for the number of seeds in a growth model in Rd with inhomogeneous Poisson arrivals
-
S. N. Chiu and M. P. Quine, Central limit theory for the number of seeds in a growth model in Rd with inhomogeneous Poisson arrivals, Ann. Appl. Probab. 7 (1997), pp. 802-814.
-
(1997)
Ann. Appl. Probab.
, vol.7
, pp. 802-814
-
-
Chiu, S.N.1
Quine, M.P.2
-
5
-
-
0035710476
-
Central limit theorem for germination-growth models in Rd with non-Poisson locations
-
S. N. Chiu and M. P. Quine, Central limit theorem for germination-growth models in Rd with non-Poisson locations, Adv. in Appl. Probab. 33 (2001), pp. 751-755.
-
(2001)
Adv. in Appl. Probab.
, vol.33
, pp. 751-755
-
-
Chiu, S.N.1
Quine, M.P.2
-
6
-
-
3142694883
-
A note on the lilypond model
-
C. Cotar and S. Volkov, A note on the lilypond model, Adv. in Appl. Probab. 36 (2004), pp. 325-339.
-
(2004)
Adv. in Appl. Probab.
, vol.36
, pp. 325-339
-
-
Cotar, C.1
Volkov, S.2
-
7
-
-
27144499336
-
Descending chains, the lilypond model and mutual-nearestneighbour matching
-
D. J. Daley and G. Last, Descending chains, the lilypond model and mutual-nearestneighbour matching, Adv. in Appl. Probab. 37 (2005), pp. 604-628.
-
(2005)
Adv. in Appl. Probab.
, vol.37
, pp. 604-628
-
-
Daley, D.J.1
Last, G.2
-
8
-
-
0342346627
-
Topological properties of random crack networks
-
N. H. Gray, J. B. Anderson, J. D. Devine and J. M. Kwasnik, Topological properties of random crack networks, Math. Geol. 8 (1976), pp. 617-626.
-
(1976)
Math. Geol.
, vol.8
, pp. 617-626
-
-
Gray, N.H.1
Anderson, J.B.2
Devine, J.D.3
Kwasnik, J.M.4
-
9
-
-
0039056192
-
Nearest neighbour and hard sphere models in continuum percolation
-
O. Haeggstroem and R. Meester, Nearest neighbour and hard sphere models in continuum percolation, Random Structures and Algorithms 9 (1996), pp. 295-315.
-
(1996)
Random Structures and Algorithms
, vol.9
, pp. 295-315
-
-
Haeggstroem, O.1
Meester, R.2
-
10
-
-
33749315513
-
Existence, uniqueness, and algorithmics computation of general lilypond systems
-
M. Heveling and G. Last, Existence, uniqueness, and algorithmics computation of general lilypond systems, Random Structures and Algorithms 29 (2006), pp. 338-350.
-
(2006)
Random Structures and Algorithms
, vol.29
, pp. 338-350
-
-
Heveling, M.1
Last, G.2
-
11
-
-
0030502150
-
A general stochastic model for nucleation and linear growth
-
L. Holst, M. P. Quine and J. Robinson, A general stochastic model for nucleation and linear growth, Ann. Appl. Probab. 6 (1996), pp. 903-921.
-
(1996)
Ann. Appl. Probab.
, vol.6
, pp. 903-921
-
-
Holst, L.1
Quine, M.P.2
Robinson, J.3
-
12
-
-
3242838589
-
Homogeneous rectangular tessellations
-
M. S. Makisack and R. E. Miles, Homogeneous rectangular tessellations, Adv. in Appl. Probab. 28 (1996), pp. 993-1013.
-
(1996)
Adv. in Appl. Probab.
, vol.28
, pp. 993-1013
-
-
Makisack, M.S.1
Miles, R.E.2
-
13
-
-
0006113474
-
Contact and chord length distributions of the Poisson Voronoi tessellation
-
L. Muche and D. Stoyan, Contact and chord length distributions of the Poisson Voronoi tessellation, J. Appl. Probab. 29 (1992), pp. 467-471.
-
(1992)
J. Appl. Probab.
, vol.29
, pp. 467-471
-
-
Muche, L.1
Stoyan, D.2
-
14
-
-
34547700101
-
Gaussian limits for random geometric measures
-
M. D. Penrose, Gaussian limits for random geometric measures, European Journal of Probability 12 (2007), pp. 989-1035.
-
(2007)
European Journal of Probability
, vol.12
, pp. 989-1035
-
-
Penrose, M.D.1
-
15
-
-
47249090814
-
Laws of large numbers in stochastic geometry with statistical applications
-
M. D. Penrose, Laws of large numbers in stochastic geometry with statistical applications, Bernoulli 13 (2007), pp. 1124-1150.
-
(2007)
Bernoulli
, vol.13
, pp. 1124-1150
-
-
Penrose, M.D.1
-
16
-
-
0035497809
-
Central limit theorems for some graphs in computational geometry
-
M. D. Penrose and J. E. Yukich, Central limit theorems for some graphs in computational geometry, Ann. Appl. Probab. 11 (2001), pp. 1005-1041.
-
(2001)
Ann. Appl. Probab.
, vol.11
, pp. 1005-1041
-
-
Penrose, M.D.1
Yukich, J.E.2
-
17
-
-
0036117358
-
Limit theory for random sequential packing and deposition
-
M. D. Penrose and J. E. Yukich, Limit theory for random sequential packing and deposition, Ann. Appl. Probab. 12 (2002), pp. 272-301.
-
(2002)
Ann. Appl. Probab.
, vol.12
, pp. 272-301
-
-
Penrose, M.D.1
Yukich, J.E.2
-
18
-
-
0037274513
-
Weak laws of large numbers in geometric probability
-
M. D. Penrose and J. E. Yukich, Weak laws of large numbers in geometric probability, Ann. Appl. Probab. 13 (2004), pp. 277-303.
-
(2004)
Ann. Appl. Probab.
, vol.13
, pp. 277-303
-
-
Penrose, M.D.1
Yukich, J.E.2
-
19
-
-
85136400913
-
Normal approximation in geometric probability
-
in: Stein's Method and Applications, A. D. Barbour and Louis H. Y. Chen (Eds.), National University of Singapore
-
M. D. Penrose and J. E. Yukich, Normal approximation in geometric probability, in: Stein's Method and Applications, A. D. Barbour and Louis H. Y. Chen (Eds.), Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore, Vol. 5 (2005), pp. 37-58.
-
(2005)
Lecture Notes Series, Institute for Mathematical Sciences
, vol.5
, pp. 37-58
-
-
Penrose, M.D.1
Yukich, J.E.2
-
20
-
-
84920025189
-
-
W. S. Kendall and I. Molchanov (Eds.), Oxford University Press
-
T. Schreiber, Limit theorems in stochastic geometry, in: New Perspectives in Stochastic Geometry, W. S. Kendall and I. Molchanov (Eds.), Oxford University Press, 2009, pp. 111-144.
-
(2009)
Limit Theorems in Stochastic Geometry
, pp. 111-144
-
-
Schreiber, T.1
-
21
-
-
0003444918
-
-
second edition, Wiley, Chichester
-
D. Stoyan, W. Kendall and J. Mecke, Stochastic Geometry and Its Applications, second edition, Wiley, Chichester 1995.
-
(1995)
Stochastic Geometry and Its Applications
-
-
Stoyan, D.1
Kendall, W.2
Mecke, J.3
|