메뉴 건너뛰기




Volumn 31, Issue 1, 2011, Pages 149-160

Limit theory for planar gilbert tessellations

Author keywords

Central limit theorem; Gilbert crack tessellation; Law of large numbers; Stabilizing geometric functionals

Indexed keywords


EID: 79960753744     PISSN: 02084147     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (4)

References (21)
  • 1
    • 14544281094 scopus 로고    scopus 로고
    • Gaussian limits for random measures in geometric probability
    • Yu. Baryshnikov and J. E. Yukich, Gaussian limits for random measures in geometric probability, Ann. Appl. Probab. 15, 1A (2005), pp. 213-253.
    • (2005) Ann. Appl. Probab. , vol.15 , Issue.1 A , pp. 213-253
    • Baryshnikov, Y.1    Yukich, J.E.2
  • 2
    • 0031067218 scopus 로고    scopus 로고
    • A central limit theorem for linear Kolmogorov's birth-growth models
    • S. N. Chiu, A central limit theorem for linear Kolmogorov's birth-growth models, Stochastic Process. Appl. 66 (1997), pp. 97-106.
    • (1997) Stochastic Process. Appl. , vol.66 , pp. 97-106
    • Chiu, S.N.1
  • 3
    • 0036065613 scopus 로고    scopus 로고
    • A regularity condition and strong limit theorems for linear birth-growth processes
    • S. N. Chiu and H. Y. Lee, A regularity condition and strong limit theorems for linear birth-growth processes, Math. Nachr. 241 (2002), pp. 21-27.
    • (2002) Math. Nachr. , vol.241 , pp. 21-27
    • Chiu, S.N.1    Lee, H.Y.2
  • 4
    • 0031478723 scopus 로고    scopus 로고
    • Central limit theory for the number of seeds in a growth model in Rd with inhomogeneous Poisson arrivals
    • S. N. Chiu and M. P. Quine, Central limit theory for the number of seeds in a growth model in Rd with inhomogeneous Poisson arrivals, Ann. Appl. Probab. 7 (1997), pp. 802-814.
    • (1997) Ann. Appl. Probab. , vol.7 , pp. 802-814
    • Chiu, S.N.1    Quine, M.P.2
  • 5
    • 0035710476 scopus 로고    scopus 로고
    • Central limit theorem for germination-growth models in Rd with non-Poisson locations
    • S. N. Chiu and M. P. Quine, Central limit theorem for germination-growth models in Rd with non-Poisson locations, Adv. in Appl. Probab. 33 (2001), pp. 751-755.
    • (2001) Adv. in Appl. Probab. , vol.33 , pp. 751-755
    • Chiu, S.N.1    Quine, M.P.2
  • 6
    • 3142694883 scopus 로고    scopus 로고
    • A note on the lilypond model
    • C. Cotar and S. Volkov, A note on the lilypond model, Adv. in Appl. Probab. 36 (2004), pp. 325-339.
    • (2004) Adv. in Appl. Probab. , vol.36 , pp. 325-339
    • Cotar, C.1    Volkov, S.2
  • 7
    • 27144499336 scopus 로고    scopus 로고
    • Descending chains, the lilypond model and mutual-nearestneighbour matching
    • D. J. Daley and G. Last, Descending chains, the lilypond model and mutual-nearestneighbour matching, Adv. in Appl. Probab. 37 (2005), pp. 604-628.
    • (2005) Adv. in Appl. Probab. , vol.37 , pp. 604-628
    • Daley, D.J.1    Last, G.2
  • 9
    • 0039056192 scopus 로고    scopus 로고
    • Nearest neighbour and hard sphere models in continuum percolation
    • O. Haeggstroem and R. Meester, Nearest neighbour and hard sphere models in continuum percolation, Random Structures and Algorithms 9 (1996), pp. 295-315.
    • (1996) Random Structures and Algorithms , vol.9 , pp. 295-315
    • Haeggstroem, O.1    Meester, R.2
  • 10
    • 33749315513 scopus 로고    scopus 로고
    • Existence, uniqueness, and algorithmics computation of general lilypond systems
    • M. Heveling and G. Last, Existence, uniqueness, and algorithmics computation of general lilypond systems, Random Structures and Algorithms 29 (2006), pp. 338-350.
    • (2006) Random Structures and Algorithms , vol.29 , pp. 338-350
    • Heveling, M.1    Last, G.2
  • 11
    • 0030502150 scopus 로고    scopus 로고
    • A general stochastic model for nucleation and linear growth
    • L. Holst, M. P. Quine and J. Robinson, A general stochastic model for nucleation and linear growth, Ann. Appl. Probab. 6 (1996), pp. 903-921.
    • (1996) Ann. Appl. Probab. , vol.6 , pp. 903-921
    • Holst, L.1    Quine, M.P.2    Robinson, J.3
  • 12
    • 3242838589 scopus 로고    scopus 로고
    • Homogeneous rectangular tessellations
    • M. S. Makisack and R. E. Miles, Homogeneous rectangular tessellations, Adv. in Appl. Probab. 28 (1996), pp. 993-1013.
    • (1996) Adv. in Appl. Probab. , vol.28 , pp. 993-1013
    • Makisack, M.S.1    Miles, R.E.2
  • 13
    • 0006113474 scopus 로고
    • Contact and chord length distributions of the Poisson Voronoi tessellation
    • L. Muche and D. Stoyan, Contact and chord length distributions of the Poisson Voronoi tessellation, J. Appl. Probab. 29 (1992), pp. 467-471.
    • (1992) J. Appl. Probab. , vol.29 , pp. 467-471
    • Muche, L.1    Stoyan, D.2
  • 14
    • 34547700101 scopus 로고    scopus 로고
    • Gaussian limits for random geometric measures
    • M. D. Penrose, Gaussian limits for random geometric measures, European Journal of Probability 12 (2007), pp. 989-1035.
    • (2007) European Journal of Probability , vol.12 , pp. 989-1035
    • Penrose, M.D.1
  • 15
    • 47249090814 scopus 로고    scopus 로고
    • Laws of large numbers in stochastic geometry with statistical applications
    • M. D. Penrose, Laws of large numbers in stochastic geometry with statistical applications, Bernoulli 13 (2007), pp. 1124-1150.
    • (2007) Bernoulli , vol.13 , pp. 1124-1150
    • Penrose, M.D.1
  • 16
    • 0035497809 scopus 로고    scopus 로고
    • Central limit theorems for some graphs in computational geometry
    • M. D. Penrose and J. E. Yukich, Central limit theorems for some graphs in computational geometry, Ann. Appl. Probab. 11 (2001), pp. 1005-1041.
    • (2001) Ann. Appl. Probab. , vol.11 , pp. 1005-1041
    • Penrose, M.D.1    Yukich, J.E.2
  • 17
    • 0036117358 scopus 로고    scopus 로고
    • Limit theory for random sequential packing and deposition
    • M. D. Penrose and J. E. Yukich, Limit theory for random sequential packing and deposition, Ann. Appl. Probab. 12 (2002), pp. 272-301.
    • (2002) Ann. Appl. Probab. , vol.12 , pp. 272-301
    • Penrose, M.D.1    Yukich, J.E.2
  • 18
    • 0037274513 scopus 로고    scopus 로고
    • Weak laws of large numbers in geometric probability
    • M. D. Penrose and J. E. Yukich, Weak laws of large numbers in geometric probability, Ann. Appl. Probab. 13 (2004), pp. 277-303.
    • (2004) Ann. Appl. Probab. , vol.13 , pp. 277-303
    • Penrose, M.D.1    Yukich, J.E.2
  • 19
    • 85136400913 scopus 로고    scopus 로고
    • Normal approximation in geometric probability
    • in: Stein's Method and Applications, A. D. Barbour and Louis H. Y. Chen (Eds.), National University of Singapore
    • M. D. Penrose and J. E. Yukich, Normal approximation in geometric probability, in: Stein's Method and Applications, A. D. Barbour and Louis H. Y. Chen (Eds.), Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore, Vol. 5 (2005), pp. 37-58.
    • (2005) Lecture Notes Series, Institute for Mathematical Sciences , vol.5 , pp. 37-58
    • Penrose, M.D.1    Yukich, J.E.2
  • 20
    • 84920025189 scopus 로고    scopus 로고
    • W. S. Kendall and I. Molchanov (Eds.), Oxford University Press
    • T. Schreiber, Limit theorems in stochastic geometry, in: New Perspectives in Stochastic Geometry, W. S. Kendall and I. Molchanov (Eds.), Oxford University Press, 2009, pp. 111-144.
    • (2009) Limit Theorems in Stochastic Geometry , pp. 111-144
    • Schreiber, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.