-
1
-
-
0000380180
-
[AB] On central limit theorems in geometrical probability
-
F. AVRAM and D. BERTSIMAS (1993) [AB] On central limit theorems in geometrical probability. Ann. Appl. Probab. 3, 1033-1046.
-
(1993)
Ann. Appl. Probab
, vol.3
, pp. 1033-1046
-
-
Avram, F.1
Bertsimas, D.2
-
2
-
-
0000193451
-
On normal approximations of distributions in terms of dependency graphs
-
P. BALDI and Y. RINOTT (1989) On normal approximations of distributions in terms of dependency graphs. Ann. Probab. 17, 1646-1650.
-
(1989)
Ann. Probab
, vol.17
, pp. 1646-1650
-
-
Baldi, P.1
Rinott, Y.2
-
3
-
-
0037279607
-
[BY1] Gaussian fields and random packing
-
Yu. BARYSHNIKOV and J. E. YUKICH (2003) [BY1] Gaussian fields and random packing. J. Statist. Phys. III, 443-463.
-
(2003)
J. Statist. Phys
, vol.3
, pp. 443-463
-
-
Baryshnikov, Y.1
Yukich, J.E.2
-
4
-
-
14544281094
-
[BY2] Gaussian limits for random measures in geometric probability
-
Yu. BARYSHNIKOV and J.E. YUKICH (2005) [BY2] Gaussian limits for random measures in geometric probability. Ann. Appl. Probab. 15, 213-253.
-
(2005)
Ann. Appl. Probab
, vol.15
, pp. 213-253
-
-
Baryshnikov, Y.1
Yukich, J.E.2
-
5
-
-
0000467043
-
Sums of functions of nearest neighbor distances, moment bounds, limit theorems and a goodness of fit test
-
P. J. BICKEL and L. BREIMAN (1983) Sums of functions of nearest neighbor distances, moment bounds, limit theorems and a goodness of fit test. Ann. Probab. 11, 185-214.
-
(1983)
Ann. Probab
, vol.11
, pp. 185-214
-
-
Bickel, P.J.1
Breiman, L.2
-
6
-
-
4544375370
-
Normal approximation under local dependence
-
L. H. Y. CHEN and Q.-M. SHAO (2004) Normal approximation under local dependence. Ann. Probab. 32, 1985-2028.
-
(2004)
Ann. Probab
, vol.32
, pp. 1985-2028
-
-
Chen, L.H.Y.1
Shao, Q.-M.2
-
7
-
-
0000959190
-
A multivariate two-sample test based on the number of nearest-neighbor type coincidences
-
N. HENZE (1988) A multivariate two-sample test based on the number of nearest-neighbor type coincidences. Ann. Statist. 16, 772-783.
-
(1988)
Ann. Statist
, vol.16
, pp. 772-783
-
-
Henze, N.1
-
9
-
-
85136390378
-
[Pe2] Multivariate spatial central limit theorems with applications to percolation and spatial graphs
-
to appear). Electronically available via
-
M. D. PENROSE (2004) [Pe2] Multivariate spatial central limit theorems with applications to percolation and spatial graphs. Ann. Probab. (to appear). Electronically available via http: //arxiv. org
-
(2004)
Ann. Probab
-
-
Penrose, M.D.1
-
10
-
-
0035497809
-
[PY1] Central limit theorems for some graphs in computational geometry
-
M. D. PENROSE and J. E. YUKICH (2001) [PY1] Central limit theorems for some graphs in computational geometry. Ann. Appl. Probab. 11, 1005-1041.
-
(2001)
Ann. Appl. Probab
, vol.11
, pp. 1005-1041
-
-
Penrose, M.D.1
Yukich, J.E.2
-
11
-
-
0036117358
-
[PY2] Limit theory for random sequential packing and deposition
-
M. D. PENROSE and J. E. YUKICH (2002) [PY2] Limit theory for random sequential packing and deposition. Ann. Appl. Probab. 12, 272-301.
-
(2002)
Ann. Appl. Probab
, vol.12
, pp. 272-301
-
-
Penrose, M.D.1
Yukich, J.E.2
-
12
-
-
0037274513
-
[PY3] Weak laws of large numbers in geometric probability
-
M. D. PENROSE and J. E. YUKICH (2003) [PY3] Weak laws of large numbers in geometric probability. Ann. Appl. Probab. 13, 277-303.
-
(2003)
Ann. Appl. Probab
, vol.13
, pp. 277-303
-
-
Penrose, M.D.1
Yukich, J.E.2
|