-
1
-
-
0000380180
-
On central limit theorems in geometrical probability
-
AVRAM, F. and BERTSIMAS, D. (1993). On central limit theorems in geometrical probability. Ann. Appl. Probab. 3 1033-1046.
-
(1993)
Ann. Appl. Probab.
, vol.3
, pp. 1033-1046
-
-
Avram, F.1
Bertsimas, D.2
-
2
-
-
0000467043
-
Sums of functions of nearest neighbor distances, moment bounds, limit theorems and a goodness of fit test
-
BICKEL, P. J. and BREIMAN, L. (1983). Sums of functions of nearest neighbor distances, moment bounds, limit theorems and a goodness of fit test. Ann. Probab. 11 185-214.
-
(1983)
Ann. Probab.
, vol.11
, pp. 185-214
-
-
Bickel, P.J.1
Breiman, L.2
-
3
-
-
38249032698
-
The expected size of some graphs in computational geometry
-
DEVROYE, L. (1988). The expected size of some graphs in computational geometry. Comput. Math. Appl. 15 53-64.
-
(1988)
Comput. Math. Appl.
, vol.15
, pp. 53-64
-
-
Devroye, L.1
-
5
-
-
26544478772
-
The expected size of the sphere of influence graph
-
Intuitive Geometry Budapest 1995
-
FÜREDI, Z. (1997). The expected size of the sphere of influence graph. Bolyai Soc. Math. Stud. 6 ("Intuitive Geometry Budapest 1995") 319-326.
-
(1997)
Bolyai Soc. Math. Stud.
, vol.6
, pp. 319-326
-
-
Füredi, Z.1
-
7
-
-
0039056192
-
Nearest neighbor and hard sphere models in continuum percolation
-
HÄGGSTRÖM, O. and MEESTER, R. (1996). Nearest neighbor and hard sphere models in continuum percolation. Random Structures Algorithms 9 295-315.
-
(1996)
Random Structures Algorithms
, vol.9
, pp. 295-315
-
-
Häggström, O.1
Meester, R.2
-
8
-
-
0007420038
-
Normal approximation for some mean value estimates of absolutely regular tessellations
-
HEINRICH, L. (1994). Normal approximation for some mean value estimates of absolutely regular tessellations. Math. Methods Statist. 3 1-24.
-
(1994)
Math. Methods Statist.
, vol.3
, pp. 1-24
-
-
Heinrich, L.1
-
9
-
-
0001699274
-
On the fraction of random points with specified nearest-neighbour interactions and degree of attraction
-
HENZE, N. (1987). On the fraction of random points with specified nearest-neighbour interactions and degree of attraction. Adv. in Appl. Probab. 19 873-895.
-
(1987)
Adv. in Appl. Probab.
, vol.19
, pp. 873-895
-
-
Henze, N.1
-
11
-
-
0030501338
-
The central limit theorem for weighted minimal spanning trees on random points
-
KESTEN, H. and LEE, S. (1996). The central limit theorem for weighted minimal spanning trees on random points. Ann. Appl. Probab. 6 495-527.
-
(1996)
Ann. Appl. Probab.
, vol.6
, pp. 495-527
-
-
Kesten, H.1
Lee, S.2
-
12
-
-
0031260688
-
The central limit theorem for Euclidean minimal spanning trees I
-
LEE, S. (1997). The central limit theorem for Euclidean minimal spanning trees I. Ann. Appl. Probab. 7 996-1020.
-
(1997)
Ann. Appl. Probab.
, vol.7
, pp. 996-1020
-
-
Lee, S.1
-
13
-
-
0033315088
-
The central limit theorem for Euclidean minimal spanning trees II
-
LEE, S. (1999). The central limit theorem for Euclidean minimal spanning trees II. Adv. in Appl. Probab. 31 969-984.
-
(1999)
Adv. in Appl. Probab.
, vol.31
, pp. 969-984
-
-
Lee, S.1
-
14
-
-
0033210542
-
Asymptotics for Voronoi tessellations on random samples
-
MCGIVNEY, K. and YUKICH, J. E. (1999). Asymptotics for Voronoi tessellations on random samples. Stochastic Process. Appl. 83 273-288.
-
(1999)
Stochastic Process. Appl.
, vol.83
, pp. 273-288
-
-
McGivney, K.1
Yukich, J.E.2
-
15
-
-
0000964674
-
Dependent central limit theorems and invariance principles
-
MCLEISH, D. L. (1974). Dependent central limit theorems and invariance principles. Ann. Probab. 2 620-628.
-
(1974)
Ann. Probab.
, vol.2
, pp. 620-628
-
-
McLeish, D.L.1
-
17
-
-
0000504893
-
Sphere of influence graphs: A survey
-
MICHAEL, T. S. and QUINT, T. (1994). Sphere of influence graphs: a survey. Congr. Numer. 105 153-160.
-
(1994)
Congr. Numer.
, vol.105
, pp. 153-160
-
-
Michael, T.S.1
Quint, T.2
-
19
-
-
0035470870
-
A spatial central limit theorem with applications to percolation, epidemics and Boolean models
-
PENROSE, M. D. (2001). A spatial central limit theorem with applications to percolation, epidemics and Boolean models. Ann. Probab. 29.
-
(2001)
Ann. Probab.
, vol.29
-
-
Penrose, M.D.1
-
20
-
-
0036117358
-
Limit theory for random sequential packing and deposition
-
PENROSE, M. D. and YUKICH, J. E. Limit theory for random sequential packing and deposition. Ann. Appl. Probab. 12.
-
Ann. Appl. Probab.
, pp. 12
-
-
Penrose, M.D.1
Yukich, J.E.2
-
22
-
-
0020428412
-
Computational geometric problems in pattern recognition
-
(J. Kittler, K. S. Fu and L. F. Pau, eds.), Reidel, Dordrecht
-
TOUSSAINT, G. T. (1982). Computational geometric problems in pattern recognition. In Pattern Recognition Theory and Applications (J. Kittler, K. S. Fu and L. F. Pau, eds.), Reidel, Dordrecht. 73-91.
-
(1982)
Pattern Recognition Theory and Applications
, pp. 73-91
-
-
Toussaint, G.T.1
|