메뉴 건너뛰기




Volumn 379, Issue 1-2, 2011, Pages 224-232

Simulation and determination of optimum conditions of pervaporative dehydration of isopropanol process using synthesized PVA-APTEOS/TEOS nanocomposite membranes by means of expert systems

Author keywords

Artificial neural network; Nanocomposite membrane; Pervaporation; Simulated annealing

Indexed keywords

ARTIFICIAL NEURAL NETWORK; BAYESIAN REGULARIZATION; EXPERIMENTAL DATA; FEED TEMPERATURE; ISO-PROPANOLS; MEMBRANE PERFORMANCE; MODEL FINDING; MODEL PREDICTION; NANOCOMPOSITE MEMBRANE; NANOCOMPOSITE MEMBRANES; OPTIMUM CONDITIONS; OUTPUT LAYER; PERVAPORATION SEPARATION INDEX; PERVAPORATIVE DEHYDRATION; TRAINING METHODS; WATER CONCENTRATIONS;

EID: 79960646725     PISSN: 03767388     EISSN: 18733123     Source Type: Journal    
DOI: 10.1016/j.memsci.2011.05.070     Document Type: Article
Times cited : (108)

References (58)
  • 1
    • 43749092169 scopus 로고    scopus 로고
    • Effect of operating conditions on pervaporation of methanol/methyl tert-butyl ether mixtures
    • Peivasti M., Madandar A., Mohammadi T. Effect of operating conditions on pervaporation of methanol/methyl tert-butyl ether mixtures. Chem. Eng. Process. Process Intensification 2008, 47:1069-1074.
    • (2008) Chem. Eng. Process. Process Intensification , vol.47 , pp. 1069-1074
    • Peivasti, M.1    Madandar, A.2    Mohammadi, T.3
  • 2
    • 79952439920 scopus 로고    scopus 로고
    • CFD simulation of water removal from water/ethylene glycol mixtures by pervaporation
    • Rezakazemi M., Shahverdi M., Shirazian S., Mohammadi T., Pak A. CFD simulation of water removal from water/ethylene glycol mixtures by pervaporation. Chem. Eng. J. 2011, 168:60-67.
    • (2011) Chem. Eng. J. , vol.168 , pp. 60-67
    • Rezakazemi, M.1    Shahverdi, M.2    Shirazian, S.3    Mohammadi, T.4    Pak, A.5
  • 3
    • 33747027790 scopus 로고    scopus 로고
    • Effect of permeate pressure on pervaporation of methyl tert-butyl ether/methanol mixtures
    • Madandar A., Mohammadi T. Effect of permeate pressure on pervaporation of methyl tert-butyl ether/methanol mixtures. Desalination 2006, 200:390-392.
    • (2006) Desalination , vol.200 , pp. 390-392
    • Madandar, A.1    Mohammadi, T.2
  • 4
    • 78249237576 scopus 로고    scopus 로고
    • Separation of ethylene glycol-water mixtures with composite poly(vinyl alcohol)-polypropylene membranes
    • Shahverdi M., Mohammadi T., Pak A. Separation of ethylene glycol-water mixtures with composite poly(vinyl alcohol)-polypropylene membranes. J. Appl. Polym. Sci. 2011, 119:1704-1710.
    • (2011) J. Appl. Polym. Sci. , vol.119 , pp. 1704-1710
    • Shahverdi, M.1    Mohammadi, T.2    Pak, A.3
  • 5
    • 33751228415 scopus 로고    scopus 로고
    • Effect of operating conditions on pervaporation of methanol-water mixtures: Part 1
    • Bakhshi A., Mohammadi T., Nik O.G., Aroujalian A. Effect of operating conditions on pervaporation of methanol-water mixtures: Part 1. Membr. Technol. 2006, 2006:7-9.
    • (2006) Membr. Technol. , vol.2006 , pp. 7-9
    • Bakhshi, A.1    Mohammadi, T.2    Nik, O.G.3    Aroujalian, A.4
  • 6
    • 33845631930 scopus 로고    scopus 로고
    • Effect of operating conditions on pervaporation of methanol-water mixtures: Part 2
    • Bakhshi A., Mohammadi T., Nik O.G., Aroujalian A. Effect of operating conditions on pervaporation of methanol-water mixtures: Part 2. Membr. Technol. 2006, 2006:7-11.
    • (2006) Membr. Technol. , vol.2006 , pp. 7-11
    • Bakhshi, A.1    Mohammadi, T.2    Nik, O.G.3    Aroujalian, A.4
  • 7
    • 77950158939 scopus 로고    scopus 로고
    • Pervaporation in chemical analysis
    • Sae-Khow O., Mitra S. Pervaporation in chemical analysis. J. Chromatogr. A 2010, 1217:2736-2746.
    • (2010) J. Chromatogr. A , vol.1217 , pp. 2736-2746
    • Sae-Khow, O.1    Mitra, S.2
  • 8
    • 3242796526 scopus 로고    scopus 로고
    • Separation of organic-organic mixtures by pervaporation: a review
    • Smitha B., Suhanya D., Sridhar S., Ramakrishna M. Separation of organic-organic mixtures by pervaporation: a review. J. Membr. Sci. 2004, 241:1-21.
    • (2004) J. Membr. Sci. , vol.241 , pp. 1-21
    • Smitha, B.1    Suhanya, D.2    Sridhar, S.3    Ramakrishna, M.4
  • 9
    • 53949119136 scopus 로고    scopus 로고
    • Membrane separation process-pervaporation through zeolite membrane
    • Wee S.-L., Tye C.-T., Bhatia S. Membrane separation process-pervaporation through zeolite membrane. Sep. Purif. Technol. 2008, 63:500-516.
    • (2008) Sep. Purif. Technol. , vol.63 , pp. 500-516
    • Wee, S.-L.1    Tye, C.-T.2    Bhatia, S.3
  • 10
    • 33845407460 scopus 로고    scopus 로고
    • Anti-trade-off in dehydration of ethanol by novel PVA/APTEOS hybrid membranes
    • Zhang Q.G., Liu Q.L., Jiang Z.Y., Chen Y. Anti-trade-off in dehydration of ethanol by novel PVA/APTEOS hybrid membranes. J. Membr. Sci. 2007, 287:237-245.
    • (2007) J. Membr. Sci. , vol.287 , pp. 237-245
    • Zhang, Q.G.1    Liu, Q.L.2    Jiang, Z.Y.3    Chen, Y.4
  • 11
    • 33847288205 scopus 로고    scopus 로고
    • Dehydration of isopropanol by novel poly(vinyl alcohol)-silicone hybrid membranes
    • Zhang Q.G., Liu Q.L., Chen Y., Chen J.H. Dehydration of isopropanol by novel poly(vinyl alcohol)-silicone hybrid membranes. Ind. Eng. Chem. Res. 2007, 46:913-920.
    • (2007) Ind. Eng. Chem. Res. , vol.46 , pp. 913-920
    • Zhang, Q.G.1    Liu, Q.L.2    Chen, Y.3    Chen, J.H.4
  • 12
    • 33749991063 scopus 로고    scopus 로고
    • Sodium montmorillonite clay loaded novel mixed matrix membranes of poly(vinyl alcohol) for pervaporation dehydration of aqueous mixtures of isopropanol and 1,4-dioxane
    • Adoor S.G., Sairam M., Manjeshwar L.S., Raju K.V.S.N., Aminabhavi T.M. Sodium montmorillonite clay loaded novel mixed matrix membranes of poly(vinyl alcohol) for pervaporation dehydration of aqueous mixtures of isopropanol and 1,4-dioxane. J. Membr. Sci. 2006, 285:182-195.
    • (2006) J. Membr. Sci. , vol.285 , pp. 182-195
    • Adoor, S.G.1    Sairam, M.2    Manjeshwar, L.S.3    Raju, K.V.S.N.4    Aminabhavi, T.M.5
  • 13
    • 27744448208 scopus 로고    scopus 로고
    • Modeling of an RO water desalination unit using neural networks
    • Abbas A., Al-Bastaki N. Modeling of an RO water desalination unit using neural networks. Chem. Eng. J. 2005, 114:139-143.
    • (2005) Chem. Eng. J. , vol.114 , pp. 139-143
    • Abbas, A.1    Al-Bastaki, N.2
  • 14
    • 53849117800 scopus 로고    scopus 로고
    • Modelling the breakthrough of activated carbon filters by pesticides in surface waters with static and recurrent neural networks
    • Faur C., Cougnaud A., Dreyfus G., Le Cloirec P. Modelling the breakthrough of activated carbon filters by pesticides in surface waters with static and recurrent neural networks. Chem. Eng. J. 2008, 145:7-15.
    • (2008) Chem. Eng. J. , vol.145 , pp. 7-15
    • Faur, C.1    Cougnaud, A.2    Dreyfus, G.3    Le Cloirec, P.4
  • 15
    • 78650516171 scopus 로고    scopus 로고
    • Artificial neural network modeling and response surface methodology of desalination by reverse osmosis
    • Khayet M., Cojocaru C., Essalhi M. Artificial neural network modeling and response surface methodology of desalination by reverse osmosis. J. Membr. Sci. 2011, 368:202-214.
    • (2011) J. Membr. Sci. , vol.368 , pp. 202-214
    • Khayet, M.1    Cojocaru, C.2    Essalhi, M.3
  • 16
    • 44049093324 scopus 로고    scopus 로고
    • Optimization of caustic current efficiency in a zero-gap advanced chlor-alkali cell with application of genetic algorithm assisted by artificial neural networks
    • Mirzazadeh T., Mohammadi F., Soltanieh M., Joudaki E. Optimization of caustic current efficiency in a zero-gap advanced chlor-alkali cell with application of genetic algorithm assisted by artificial neural networks. Chem. Eng. J. 2008, 140:157-164.
    • (2008) Chem. Eng. J. , vol.140 , pp. 157-164
    • Mirzazadeh, T.1    Mohammadi, F.2    Soltanieh, M.3    Joudaki, E.4
  • 17
    • 67349105559 scopus 로고    scopus 로고
    • Treatment of leather plant effluent using NF followed by RO and permeate flux prediction using artificial neural network
    • Purkait M.K., Kumar V.D., Maity D. Treatment of leather plant effluent using NF followed by RO and permeate flux prediction using artificial neural network. Chem. Eng. J. 2009, 151:275-285.
    • (2009) Chem. Eng. J. , vol.151 , pp. 275-285
    • Purkait, M.K.1    Kumar, V.D.2    Maity, D.3
  • 18
    • 67649625524 scopus 로고    scopus 로고
    • Optimization of a novel combination of fixed and fluidized-bed hydrogen-permselective membrane reactors for Fischer-Tropsch synthesis in GTL technology
    • Rahimpour M.R., Elekaei H. Optimization of a novel combination of fixed and fluidized-bed hydrogen-permselective membrane reactors for Fischer-Tropsch synthesis in GTL technology. Chem. Eng. J. 2009, 152:543-555.
    • (2009) Chem. Eng. J. , vol.152 , pp. 543-555
    • Rahimpour, M.R.1    Elekaei, H.2
  • 19
    • 34248587417 scopus 로고    scopus 로고
    • Neural networks modeling of hollow fiber membrane processes
    • Shahsavand A., Chenar M.P. Neural networks modeling of hollow fiber membrane processes. J. Membr. Sci. 2007, 297:59-73.
    • (2007) J. Membr. Sci. , vol.297 , pp. 59-73
    • Shahsavand, A.1    Chenar, M.P.2
  • 20
    • 46449122285 scopus 로고    scopus 로고
    • Evaluation of a mathematical model using experimental data and artificial neural network for prediction of gas separation
    • Peer M., Mahdyarfar M., Mohammadi T. Evaluation of a mathematical model using experimental data and artificial neural network for prediction of gas separation. J. Nat. Gas Chem. 2008, 17:135-141.
    • (2008) J. Nat. Gas Chem. , vol.17 , pp. 135-141
    • Peer, M.1    Mahdyarfar, M.2    Mohammadi, T.3
  • 21
    • 44849141066 scopus 로고    scopus 로고
    • Artificial neural network simulation of combined humic substance coagulation and membrane filtration
    • Al-Abri M., Hilal N. Artificial neural network simulation of combined humic substance coagulation and membrane filtration. Chem. Eng. J. 2008, 141:27-34.
    • (2008) Chem. Eng. J. , vol.141 , pp. 27-34
    • Al-Abri, M.1    Hilal, N.2
  • 22
    • 60549093196 scopus 로고    scopus 로고
    • Prediction of permeate flux during electric field enhanced cross-flow ultrafiltration: a neural network approach
    • Sarkar B., Sengupta A., De S., DasGupta S. Prediction of permeate flux during electric field enhanced cross-flow ultrafiltration: a neural network approach. Sep. Purif. Technol. 2009, 65:260-268.
    • (2009) Sep. Purif. Technol. , vol.65 , pp. 260-268
    • Sarkar, B.1    Sengupta, A.2    De, S.3    DasGupta, S.4
  • 23
    • 78649580641 scopus 로고    scopus 로고
    • Effect of annealing temperature and time on structure and performance of poly(vinyl)alcohol nanocomposite membranes
    • Sabetghadam A., Mohammadi T. Effect of annealing temperature and time on structure and performance of poly(vinyl)alcohol nanocomposite membranes. Polym. Eng. Sci. 2010, 50:2392-2399.
    • (2010) Polym. Eng. Sci. , vol.50 , pp. 2392-2399
    • Sabetghadam, A.1    Mohammadi, T.2
  • 24
    • 79551526061 scopus 로고    scopus 로고
    • Dehydration of isopropanol by PVA-APTEOS/TEOS nanocomposite membranes
    • Razavi S., Sabetghadam A., Mohammadi T. Dehydration of isopropanol by PVA-APTEOS/TEOS nanocomposite membranes. Chem. Eng. Res. Des. 2011, 89:148-155.
    • (2011) Chem. Eng. Res. Des. , vol.89 , pp. 148-155
    • Razavi, S.1    Sabetghadam, A.2    Mohammadi, T.3
  • 25
    • 84858324932 scopus 로고    scopus 로고
    • Simulation of structural features on mechanochemical synthesis of Al2O3-TiB2 nanocomposite by optimized artificial neural network
    • J. Adv. Powder Technol., in press. doi:10.1016/j.apt.2011.02.011
    • A. Ghafari-Nazari, M. Mozafari, Simulation of structural features on mechanochemical synthesis of Al2O3-TiB2 nanocomposite by optimized artificial neural network, J. Adv. Powder Technol., in press. doi:10.1016/j.apt.2011.02.011.
    • Ghafari-Nazari, A.1    Mozafari, M.2
  • 29
    • 22144498880 scopus 로고    scopus 로고
    • Pervaporation separation of water+isopropanol mixtures using novel nanocomposite membranes of poly(vinyl alcohol) and polyaniline
    • Vijaya Kumar Naidu B., Sairam M., Raju K.V.S.N., Aminabhavi T.M. Pervaporation separation of water+isopropanol mixtures using novel nanocomposite membranes of poly(vinyl alcohol) and polyaniline. J. Membr. Sci. 2005, 260:142-155.
    • (2005) J. Membr. Sci. , vol.260 , pp. 142-155
    • Vijaya Kumar Naidu, B.1    Sairam, M.2    Raju, K.V.S.N.3    Aminabhavi, T.M.4
  • 31
    • 76549136193 scopus 로고    scopus 로고
    • Mechanical strength and setting times estimation of hydroxyapatite cement by using neural network
    • Baseri H., Rabiee S.M., Moztarzadeh F., Solati-Hashjin M. Mechanical strength and setting times estimation of hydroxyapatite cement by using neural network. Mater. Des. 2010, 31:2585-2591.
    • (2010) Mater. Des. , vol.31 , pp. 2585-2591
    • Baseri, H.1    Rabiee, S.M.2    Moztarzadeh, F.3    Solati-Hashjin, M.4
  • 32
    • 0001867238 scopus 로고
    • Interpreting neural network connection weights
    • Garson G.D. Interpreting neural network connection weights. AI Expert 1991, 6:47-51.
    • (1991) AI Expert , vol.6 , pp. 47-51
    • Garson, G.D.1
  • 33
    • 0028666973 scopus 로고
    • Seismic liquefaction potential assessed by neural networks
    • Goh A.T.C. Seismic liquefaction potential assessed by neural networks. J. Geotech. Eng. 1994, 120:1467-1480.
    • (1994) J. Geotech. Eng. , vol.120 , pp. 1467-1480
    • Goh, A.T.C.1
  • 35
    • 56849087528 scopus 로고    scopus 로고
    • Application of artificial neural networks to estimate wastewater treatment plant inlet biochemical oxygen demand
    • Dogan E., Ates A., Yilmaz E.C., Eren B. Application of artificial neural networks to estimate wastewater treatment plant inlet biochemical oxygen demand. Environ. Prog. 2008, 27:439-446.
    • (2008) Environ. Prog. , vol.27 , pp. 439-446
    • Dogan, E.1    Ates, A.2    Yilmaz, E.C.3    Eren, B.4
  • 36
    • 57049092179 scopus 로고    scopus 로고
    • A simulated annealing-based approach to the optimal synthesis of heat-integrated distillation sequences
    • Wei-zhong A., Xi-Gang Y. A simulated annealing-based approach to the optimal synthesis of heat-integrated distillation sequences. Comput. Chem. Eng. 2009, 33:199-212.
    • (2009) Comput. Chem. Eng. , vol.33 , pp. 199-212
    • Wei-zhong, A.1    Xi-Gang, Y.2
  • 37
    • 34250008373 scopus 로고    scopus 로고
    • Multi-objective optimization of an industrial fluidized-bed catalytic cracking unit (FCCU) using two jumping gene adaptations of simulated annealing
    • Sankararao B., Gupta S.K. Multi-objective optimization of an industrial fluidized-bed catalytic cracking unit (FCCU) using two jumping gene adaptations of simulated annealing. Comput. Chem. Eng. 2007, 31:1496-1515.
    • (2007) Comput. Chem. Eng. , vol.31 , pp. 1496-1515
    • Sankararao, B.1    Gupta, S.K.2
  • 38
    • 0030735069 scopus 로고    scopus 로고
    • Simulated annealing simulated
    • Fabian V. Simulated annealing simulated. Comput. Math. Appl. 1997, 33:81-94.
    • (1997) Comput. Math. Appl. , vol.33 , pp. 81-94
    • Fabian, V.1
  • 39
    • 79960633046 scopus 로고    scopus 로고
    • Genetic algorithm and direct search toolbox 2 user's guide
    • Genetic algorithm and direct search toolbox 2 user's guide, 2007.
    • (2007)
  • 40
    • 33745941576 scopus 로고    scopus 로고
    • Modeling of submerged membrane bioreactor treating cheese whey wastewater by artificial neural network
    • Çinar Ö., Hasar H., Kinaci C. Modeling of submerged membrane bioreactor treating cheese whey wastewater by artificial neural network. J. Biotechnol. 2006, 123:204-209.
    • (2006) J. Biotechnol. , vol.123 , pp. 204-209
    • Çinar, Ö.1    Hasar, H.2    Kinaci, C.3
  • 41
    • 33750307883 scopus 로고    scopus 로고
    • Radial basis function neural networks-based modeling of the membrane separation process: hydrogen recovery from refinery gases
    • Wang L., Shao C., Wang H., Wu H. Radial basis function neural networks-based modeling of the membrane separation process: hydrogen recovery from refinery gases. J. Nat. Gas Chem. 2006, 15:230-234.
    • (2006) J. Nat. Gas Chem. , vol.15 , pp. 230-234
    • Wang, L.1    Shao, C.2    Wang, H.3    Wu, H.4
  • 42
    • 33747889741 scopus 로고    scopus 로고
    • Predicting flux decline in crossflow membranes using artificial neural networks and genetic algorithms
    • Sahoo G.B., Ray C. Predicting flux decline in crossflow membranes using artificial neural networks and genetic algorithms. J. Membr. Sci. 2006, 283:147-157.
    • (2006) J. Membr. Sci. , vol.283 , pp. 147-157
    • Sahoo, G.B.1    Ray, C.2
  • 43
    • 33846786458 scopus 로고    scopus 로고
    • Rejection and modelling of sulphate and potassium salts by nanofiltration membranes: neural network and Spiegler-Kedem model
    • Al-Zoubi H., Hilal N., Darwish N.A., Mohammad A.W. Rejection and modelling of sulphate and potassium salts by nanofiltration membranes: neural network and Spiegler-Kedem model. Desalination 2007, 206:42-60.
    • (2007) Desalination , vol.206 , pp. 42-60
    • Al-Zoubi, H.1    Hilal, N.2    Darwish, N.A.3    Mohammad, A.W.4
  • 44
    • 34247563914 scopus 로고    scopus 로고
    • Neural networks simulation of the filtration of sodium chloride and magnesium chloride solutions using nanofiltration membranes
    • Darwish N.A., Hilal N., Al-Zoubi H., Mohammad A.W. Neural networks simulation of the filtration of sodium chloride and magnesium chloride solutions using nanofiltration membranes. Chem. Eng. Res. Des. 2007, 85:417-430.
    • (2007) Chem. Eng. Res. Des. , vol.85 , pp. 417-430
    • Darwish, N.A.1    Hilal, N.2    Al-Zoubi, H.3    Mohammad, A.W.4
  • 45
    • 37249062087 scopus 로고    scopus 로고
    • Predicting effect of interparticle interactions on permeate flux decline in CMF of colloidal suspensions: an overlapped type of local neural network
    • Cheng L.-H., Cheng Y.-F., Chen J. Predicting effect of interparticle interactions on permeate flux decline in CMF of colloidal suspensions: an overlapped type of local neural network. J. Membr. Sci. 2008, 308:54-65.
    • (2008) J. Membr. Sci. , vol.308 , pp. 54-65
    • Cheng, L.-H.1    Cheng, Y.-F.2    Chen, J.3
  • 46
    • 47049092954 scopus 로고    scopus 로고
    • Neural network modeling for separation of bentonite in tubular ceramic membranes
    • Hilal N., Ogunbiyi O.O., Al-Abri M. Neural network modeling for separation of bentonite in tubular ceramic membranes. Desalination 2008, 228:175-182.
    • (2008) Desalination , vol.228 , pp. 175-182
    • Hilal, N.1    Ogunbiyi, O.O.2    Al-Abri, M.3
  • 47
    • 47249095886 scopus 로고    scopus 로고
    • Development of an artificial neural network model for prediction of cell voltage and current efficiency in a chlor-alkali membrane cell
    • Kaveh N.S., Ashrafizadeh S.N., Mohammadi F. Development of an artificial neural network model for prediction of cell voltage and current efficiency in a chlor-alkali membrane cell. Chem. Eng. Res. Des. 2008, 86:461-472.
    • (2008) Chem. Eng. Res. Des. , vol.86 , pp. 461-472
    • Kaveh, N.S.1    Ashrafizadeh, S.N.2    Mohammadi, F.3
  • 48
    • 53449086599 scopus 로고    scopus 로고
    • Separation of lead ions from wastewater using electrodialysis: comparing mathematical and neural network modeling
    • Sadrzadeh M., Mohammadi T., Ivakpour J., Kasiri N. Separation of lead ions from wastewater using electrodialysis: comparing mathematical and neural network modeling. Chem. Eng. J. 2008, 144:431-441.
    • (2008) Chem. Eng. J. , vol.144 , pp. 431-441
    • Sadrzadeh, M.1    Mohammadi, T.2    Ivakpour, J.3    Kasiri, N.4
  • 49
    • 69349086550 scopus 로고    scopus 로고
    • Artificial neural network model for optimizing operation of a seawater reverse osmosis desalination plant
    • Lee Y.G., Lee Y.S., Jeon J.J., Lee S., Yang D.R., Kim I.S., Kim J.H. Artificial neural network model for optimizing operation of a seawater reverse osmosis desalination plant. Desalination 2009, 247:180-189.
    • (2009) Desalination , vol.247 , pp. 180-189
    • Lee, Y.G.1    Lee, Y.S.2    Jeon, J.J.3    Lee, S.4    Yang, D.R.5    Kim, I.S.6    Kim, J.H.7
  • 50
    • 58149196170 scopus 로고    scopus 로고
    • Neural network approach for modeling the performance of reverse osmosis membrane desalting
    • Libotean D., Giralt J., Giralt F., Rallo R., Wolfe T., Cohen Y. Neural network approach for modeling the performance of reverse osmosis membrane desalting. J. Membr. Sci. 2009, 326:408-419.
    • (2009) J. Membr. Sci. , vol.326 , pp. 408-419
    • Libotean, D.1    Giralt, J.2    Giralt, F.3    Rallo, R.4    Wolfe, T.5    Cohen, Y.6
  • 51
    • 77349122829 scopus 로고    scopus 로고
    • Prediction of microfiltration membrane fouling using artificial neural network models
    • Liu Q.-F., Kim S.-H., Lee S. Prediction of microfiltration membrane fouling using artificial neural network models. Sep. Purif. Technol. 2009, 70:96-102.
    • (2009) Sep. Purif. Technol. , vol.70 , pp. 96-102
    • Liu, Q.-F.1    Kim, S.-H.2    Lee, S.3
  • 52
    • 68049148334 scopus 로고    scopus 로고
    • Artificial neural network models based on QSAR for predicting rejection of neutral organic compounds by polyamide nanofiltration and reverse osmosis membranes
    • Yangali-Quintanilla V., Verliefde A., Kim T.U., Sadmani A., Kennedy M., Amy G. Artificial neural network models based on QSAR for predicting rejection of neutral organic compounds by polyamide nanofiltration and reverse osmosis membranes. J. Membr. Sci. 2009, 342:251-262.
    • (2009) J. Membr. Sci. , vol.342 , pp. 251-262
    • Yangali-Quintanilla, V.1    Verliefde, A.2    Kim, T.U.3    Sadmani, A.4    Kennedy, M.5    Amy, G.6
  • 53
    • 51849093967 scopus 로고    scopus 로고
    • Parametric analysis of proton exchange membrane fuel cell performance by using the Taguchi method and a neural network
    • Wu S.-J., Shiah S.-W., Yu W.-L. Parametric analysis of proton exchange membrane fuel cell performance by using the Taguchi method and a neural network. Renew. Energy 2009, 34:135-144.
    • (2009) Renew. Energy , vol.34 , pp. 135-144
    • Wu, S.-J.1    Shiah, S.-W.2    Yu, W.-L.3
  • 54
    • 71549144442 scopus 로고    scopus 로고
    • Predicting the flux decline in milk cross-flow ceramic ultrafiltration by artificial neural networks
    • Guadix A., Zapata J.E., Almecija M.C., Guadix E.M. Predicting the flux decline in milk cross-flow ceramic ultrafiltration by artificial neural networks. Desalination 2010, 250:1118-1120.
    • (2010) Desalination , vol.250 , pp. 1118-1120
    • Guadix, A.1    Zapata, J.E.2    Almecija, M.C.3    Guadix, E.M.4
  • 55
    • 77249105911 scopus 로고    scopus 로고
    • Modeling of a proton exchange membrane fuel cell based on the hybrid particle swarm optimization with Levenberg-Marquardt neural network
    • Hu P., Cao G.-Y., Zhu X.-J., Li J. Modeling of a proton exchange membrane fuel cell based on the hybrid particle swarm optimization with Levenberg-Marquardt neural network. Simulat. Model. Pract. Theory 2010, 18:574-588.
    • (2010) Simulat. Model. Pract. Theory , vol.18 , pp. 574-588
    • Hu, P.1    Cao, G.-Y.2    Zhu, X.-J.3    Li, J.4
  • 56
    • 77953387911 scopus 로고    scopus 로고
    • Treatment of oily wastewater using low cost ceramic membrane: comparative assessment of pore blocking and artificial neural network models
    • Nandi B.K., Moparthi A., Uppaluri R., Purkait M.K. Treatment of oily wastewater using low cost ceramic membrane: comparative assessment of pore blocking and artificial neural network models. Chem. Eng. Res. Des. 2010, 88:881-892.
    • (2010) Chem. Eng. Res. Des. , vol.88 , pp. 881-892
    • Nandi, B.K.1    Moparthi, A.2    Uppaluri, R.3    Purkait, M.K.4
  • 57
    • 78349313205 scopus 로고    scopus 로고
    • Part II: prediction of the dialysis process performance using artificial neural network (ANN)
    • Godini H.R., Ghadrdan M., Omidkhah M.R., Madaeni S.S. Part II: prediction of the dialysis process performance using artificial neural network (ANN). Desalination 2011, 265:11-21.
    • (2011) Desalination , vol.265 , pp. 11-21
    • Godini, H.R.1    Ghadrdan, M.2    Omidkhah, M.R.3    Madaeni, S.S.4
  • 58
    • 79751534610 scopus 로고    scopus 로고
    • Prediction and analysis of the cathode catalyst layer performance of proton exchange membrane fuel cells using artificial neural network and statistical methods
    • Khajeh-Hosseini-Dalasm N., Ahadian S., Fushinobu K., Okazaki K., Kawazoe Y. Prediction and analysis of the cathode catalyst layer performance of proton exchange membrane fuel cells using artificial neural network and statistical methods. J. Power Sources 2011, 196:3750-3756.
    • (2011) J. Power Sources , vol.196 , pp. 3750-3756
    • Khajeh-Hosseini-Dalasm, N.1    Ahadian, S.2    Fushinobu, K.3    Okazaki, K.4    Kawazoe, Y.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.