메뉴 건너뛰기




Volumn 326, Issue 2, 2009, Pages 408-419

Neural network approach for modeling the performance of reverse osmosis membrane desalting

Author keywords

Artificial neural networks; Desalination; Flux decline; Process performance forecasting; Reverse osmosis; Salt passage

Indexed keywords

ARTIFICIAL NEURAL NETWORKS; CONTROL STRATEGIES; FLUX DECLINE; FORECASTING MODELS; INPUT VARIABLES; MODEL ARCHITECTURES; MODELING APPROACHES; OPERATING PARAMETERS; OPERATIONAL DIAGNOSTICS; PERMEATE FLUXES; PLANT INFORMATIONS; PLANT MODELS; PLANT PERFORMANCES; PREDICTIVE ACCURACIES; PROCESS DIAGNOSTICS; PROCESS PERFORMANCE FORECASTING; REVERSE OSMOSIS MEMBRANES; RO PLANTS; SALT PASSAGE; SEQUENTIAL MODELS; SUPPORT VECTOR REGRESSIONS; TARGET VALUES; TIME CONDITIONS; TIME SCALES; TIME-SERIES ANALYSES; UNSTEADY STATES;

EID: 58149196170     PISSN: 03767388     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.memsci.2008.10.028     Document Type: Article
Times cited : (68)

References (36)
  • 1
    • 0942301964 scopus 로고    scopus 로고
    • Mathematical modeling of reverse osmosis systems
    • Jamal K., Khan M.A., and Kamil M. Mathematical modeling of reverse osmosis systems. Desalination 160 1 (2004) 29-42
    • (2004) Desalination , vol.160 , Issue.1 , pp. 29-42
    • Jamal, K.1    Khan, M.A.2    Kamil, M.3
  • 2
    • 1442313084 scopus 로고    scopus 로고
    • The development of membrane fouling in full-scale RO processes
    • Chen K.L., Song L.F., Ong S.L., and Ng W.J. The development of membrane fouling in full-scale RO processes. J. Membr. Sci. 232 1-2 (2004) 63-72
    • (2004) J. Membr. Sci. , vol.232 , Issue.1-2 , pp. 63-72
    • Chen, K.L.1    Song, L.F.2    Ong, S.L.3    Ng, W.J.4
  • 3
    • 0028987364 scopus 로고
    • Dynamic modeling of cross-flow microfiltration using neural networks
    • Dornier M., Decloux M., Trystram G., and Lebert A. Dynamic modeling of cross-flow microfiltration using neural networks. J. Membr. Sci. 98 3 (1995) 263-273
    • (1995) J. Membr. Sci. , vol.98 , Issue.3 , pp. 263-273
    • Dornier, M.1    Decloux, M.2    Trystram, G.3    Lebert, A.4
  • 4
    • 0028989580 scopus 로고
    • Simulation of membrane separation by neural networks
    • Niemi H., Bulsari A., and Palosaari S. Simulation of membrane separation by neural networks. J. Membr. Sci. 120 (1995) 185-191
    • (1995) J. Membr. Sci. , vol.120 , pp. 185-191
    • Niemi, H.1    Bulsari, A.2    Palosaari, S.3
  • 5
    • 0032216181 scopus 로고    scopus 로고
    • Prediction of the rate of crossflow membrane ultrafiltration of colloids: a neural network approach
    • Bowen W.R., Jones M.G., and Yousef H.N.S. Prediction of the rate of crossflow membrane ultrafiltration of colloids: a neural network approach. Chem. Eng. Sci. 53 22 (1998) 3793-3802
    • (1998) Chem. Eng. Sci. , vol.53 , Issue.22 , pp. 3793-3802
    • Bowen, W.R.1    Jones, M.G.2    Yousef, H.N.S.3
  • 7
    • 0032508908 scopus 로고    scopus 로고
    • Neural networks for prediction of ultrafiltration transmembrane pressure-application to drinking water production
    • Delgrange N., Cabassud C., Cabassud M., Durand-Bourlier L., and Laine J.M. Neural networks for prediction of ultrafiltration transmembrane pressure-application to drinking water production. J. Membr. Sci. 150 (1998) 111-123
    • (1998) J. Membr. Sci. , vol.150 , pp. 111-123
    • Delgrange, N.1    Cabassud, C.2    Cabassud, M.3    Durand-Bourlier, L.4    Laine, J.M.5
  • 8
    • 0034351573 scopus 로고    scopus 로고
    • Neural networks for long term prediction of fouling and backwash efficiency in ultrafiltration for drinking water production
    • Delgrange-Vincent N., Cabassud C., Cabassud M., Durand-Bourlier L., and Laine J.M. Neural networks for long term prediction of fouling and backwash efficiency in ultrafiltration for drinking water production. Desalination 131 (2000) 353-362
    • (2000) Desalination , vol.131 , pp. 353-362
    • Delgrange-Vincent, N.1    Cabassud, C.2    Cabassud, M.3    Durand-Bourlier, L.4    Laine, J.M.5
  • 9
    • 0038054285 scopus 로고    scopus 로고
    • Predicting membrane fouling during municipal drinking water nanofiltration using artificial neural networks
    • Shetty G.R., and Chellam S. Predicting membrane fouling during municipal drinking water nanofiltration using artificial neural networks. J. Membr. Sci. 217 1-2 (2003) 69-86
    • (2003) J. Membr. Sci. , vol.217 , Issue.1-2 , pp. 69-86
    • Shetty, G.R.1    Chellam, S.2
  • 10
    • 0742305956 scopus 로고    scopus 로고
    • Application of neural networks for crossflow milk ultrafiltration simulation
    • Razavi M.A., Mortazavi A., and Mousavi M. Application of neural networks for crossflow milk ultrafiltration simulation. Int. Dairy J. 14 1 (2004) 69-80
    • (2004) Int. Dairy J. , vol.14 , Issue.1 , pp. 69-80
    • Razavi, M.A.1    Mortazavi, A.2    Mousavi, M.3
  • 11
    • 27744448208 scopus 로고    scopus 로고
    • Modeling of an reverse osmosis water desalination unit using neural networks
    • Abbas A., and Al-Bastaki N. Modeling of an reverse osmosis water desalination unit using neural networks. Chem. Eng. J. 114 (2005) 139-143
    • (2005) Chem. Eng. J. , vol.114 , pp. 139-143
    • Abbas, A.1    Al-Bastaki, N.2
  • 12
    • 20444445001 scopus 로고    scopus 로고
    • Artificial neural network model for transient crossflow microfiltration of polydispersed suspensions
    • Chellam S. Artificial neural network model for transient crossflow microfiltration of polydispersed suspensions. J. Membr. Sci. 258 1-2 (2005) 35-42
    • (2005) J. Membr. Sci. , vol.258 , Issue.1-2 , pp. 35-42
    • Chellam, S.1
  • 13
    • 33645931361 scopus 로고    scopus 로고
    • Prediction of permeate flux decline in crossflow membrane filtration of colloidal suspension: a radial basis function neural network approach
    • Chen H.Q., and Kim A.S. Prediction of permeate flux decline in crossflow membrane filtration of colloidal suspension: a radial basis function neural network approach. Desalination 192 1-3 (2006) 415-428
    • (2006) Desalination , vol.192 , Issue.1-3 , pp. 415-428
    • Chen, H.Q.1    Kim, A.S.2
  • 14
    • 33747889741 scopus 로고    scopus 로고
    • Predicting flux decline in crossflow membranes using artificial neural networks and genetic algorithms
    • Sahoo G.B., and Ray C. Predicting flux decline in crossflow membranes using artificial neural networks and genetic algorithms. J. Membr. Sci. 283 1-2 (2006) 147-157
    • (2006) J. Membr. Sci. , vol.283 , Issue.1-2 , pp. 147-157
    • Sahoo, G.B.1    Ray, C.2
  • 16
    • 0037114379 scopus 로고    scopus 로고
    • Neural virtual sensor for the inferential prediction of product quality from process variables
    • Rallo R., Ferre-Gine J., Arenas A., and Giralt F. Neural virtual sensor for the inferential prediction of product quality from process variables. Comp. Chem. Eng. 26 (2002) 1735-1754
    • (2002) Comp. Chem. Eng. , vol.26 , pp. 1735-1754
    • Rallo, R.1    Ferre-Gine, J.2    Arenas, A.3    Giralt, F.4
  • 17
    • 0033948241 scopus 로고    scopus 로고
    • The simulation and interpretation of turbulence with a cognitive neural system
    • Giralt F., Arenas A., Ferre-Gine J., Rallo R., and Kopp G.A. The simulation and interpretation of turbulence with a cognitive neural system. Phys. Fluids 12 7 (2000) 1826-1835
    • (2000) Phys. Fluids , vol.12 , Issue.7 , pp. 1826-1835
    • Giralt, F.1    Arenas, A.2    Ferre-Gine, J.3    Rallo, R.4    Kopp, G.A.5
  • 18
    • 58149202640 scopus 로고    scopus 로고
    • ASTM D 4516-00, Standard Practice for Standardizing Reverse Osmosis Performance Data, in American Society of Testing Materials, 2000.
    • ASTM D 4516-00, Standard Practice for Standardizing Reverse Osmosis Performance Data, in American Society of Testing Materials, 2000.
  • 19
    • 58149185917 scopus 로고    scopus 로고
    • T.D. Wolfe, Membrane Process Optimization Technology, Bureau of Reclamation, Desalination and Water Purification Research and Development Report No. 100, 2003.
    • T.D. Wolfe, Membrane Process Optimization Technology, Bureau of Reclamation, Desalination and Water Purification Research and Development Report No. 100, 2003.
  • 20
    • 58149177975 scopus 로고    scopus 로고
    • OLI, OLI Analyzer 2.0, OLI Systems, Morris Plains, NJ, 2005.
    • OLI, OLI Analyzer 2.0, OLI Systems, Morris Plains, NJ, 2005.
  • 22
    • 0025475020 scopus 로고
    • An introduction to neural nets
    • Bhagat P. An introduction to neural nets. Chem. Eng. Prog. 86 8 (1990) 55-60
    • (1990) Chem. Eng. Prog. , vol.86 , Issue.8 , pp. 55-60
    • Bhagat, P.1
  • 24
    • 0003798627 scopus 로고    scopus 로고
    • Schölkoft B., Burges C.J.C., and Smola A.J. (Eds), MIT Press, Cambridge
    • In: Schölkoft B., Burges C.J.C., and Smola A.J. (Eds). Advances in Kernel Methods: Support Vector Learning (1999), MIT Press, Cambridge
    • (1999) Advances in Kernel Methods: Support Vector Learning
  • 25
    • 34848824629 scopus 로고    scopus 로고
    • Applications of support vector machines in chemistry
    • Lipkowitz K.B., and Cundari T.R. (Eds), Wiley-VCH, Weinheim
    • Ivanciuc O. Applications of support vector machines in chemistry. In: Lipkowitz K.B., and Cundari T.R. (Eds). Reviews in Computational Chemistry vol. 23 (2007), Wiley-VCH, Weinheim 291-400
    • (2007) Reviews in Computational Chemistry , vol.23 , pp. 291-400
    • Ivanciuc, O.1
  • 27
    • 0026980087 scopus 로고
    • How Neural Networks Learn from Experience
    • Hinton G.E. How Neural Networks Learn from Experience. Sci. Am. 267 3 (1992) 145-151
    • (1992) Sci. Am. , vol.267 , Issue.3 , pp. 145-151
    • Hinton, G.E.1
  • 28
    • 0027576905 scopus 로고
    • Use neural networks for problem-solving
    • Chitra S.P. Use neural networks for problem-solving. Chem. Eng. Prog. 89 4 (1993) 44-52
    • (1993) Chem. Eng. Prog. , vol.89 , Issue.4 , pp. 44-52
    • Chitra, S.P.1
  • 29
    • 0038724207 scopus 로고    scopus 로고
    • The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models
    • Tropsha A., Gramatica P., and Gombar V.K. The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb. Sci. 22 1 (2003) 69-77
    • (2003) QSAR Comb. Sci. , vol.22 , Issue.1 , pp. 69-77
    • Tropsha, A.1    Gramatica, P.2    Gombar, V.K.3
  • 31
    • 77956742952 scopus 로고    scopus 로고
    • A. Tropsha, Variable selection QSAR modeling, model validation, and virtual screening, in: Y. Martin (Ed.), Ann. Rev. Comp. Chem., Chapters 4 and 7, Elsevier, 2006, pp. 113-126.
    • A. Tropsha, Variable selection QSAR modeling, model validation, and virtual screening, in: Y. Martin (Ed.), Ann. Rev. Comp. Chem., Chapters 4 and 7, Elsevier, 2006, pp. 113-126.
  • 32
    • 58149177972 scopus 로고    scopus 로고
    • Guidance Document on the Validation of (Quantitative) Structure-Activity Relationships [(Q)SAR] Models, Organization for Economic Cooperation and Development, Paris, 2007.
    • Guidance Document on the Validation of (Quantitative) Structure-Activity Relationships [(Q)SAR] Models, Organization for Economic Cooperation and Development, Paris, 2007.
  • 33
    • 0345404396 scopus 로고    scopus 로고
    • The self-organizing map
    • Kohonen T. The self-organizing map. Neurocomputing 21 1-3 (1998) 1-6
    • (1998) Neurocomputing , vol.21 , Issue.1-3 , pp. 1-6
    • Kohonen, T.1
  • 34
    • 0025489075 scopus 로고
    • The Self-Organizing Map
    • Kohonen T. The Self-Organizing Map. Proc. IEEE 78 9 (1990) 1464-1480
    • (1990) Proc. IEEE , vol.78 , Issue.9 , pp. 1464-1480
    • Kohonen, T.1
  • 36
    • 0036221122 scopus 로고    scopus 로고
    • Optimal division of data for neural network models in water resources applications
    • Bowden G.J., Maier H.R., and Dandy G.C. Optimal division of data for neural network models in water resources applications. Water Resour. Res. 38 2 (2002) 2.1-2.11
    • (2002) Water Resour. Res. , vol.38 , Issue.2
    • Bowden, G.J.1    Maier, H.R.2    Dandy, G.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.