-
1
-
-
0942301964
-
Mathematical modeling of reverse osmosis systems
-
Jamal K., Khan M.A., and Kamil M. Mathematical modeling of reverse osmosis systems. Desalination 160 1 (2004) 29-42
-
(2004)
Desalination
, vol.160
, Issue.1
, pp. 29-42
-
-
Jamal, K.1
Khan, M.A.2
Kamil, M.3
-
2
-
-
1442313084
-
The development of membrane fouling in full-scale RO processes
-
Chen K.L., Song L.F., Ong S.L., and Ng W.J. The development of membrane fouling in full-scale RO processes. J. Membr. Sci. 232 1-2 (2004) 63-72
-
(2004)
J. Membr. Sci.
, vol.232
, Issue.1-2
, pp. 63-72
-
-
Chen, K.L.1
Song, L.F.2
Ong, S.L.3
Ng, W.J.4
-
3
-
-
0028987364
-
Dynamic modeling of cross-flow microfiltration using neural networks
-
Dornier M., Decloux M., Trystram G., and Lebert A. Dynamic modeling of cross-flow microfiltration using neural networks. J. Membr. Sci. 98 3 (1995) 263-273
-
(1995)
J. Membr. Sci.
, vol.98
, Issue.3
, pp. 263-273
-
-
Dornier, M.1
Decloux, M.2
Trystram, G.3
Lebert, A.4
-
4
-
-
0028989580
-
Simulation of membrane separation by neural networks
-
Niemi H., Bulsari A., and Palosaari S. Simulation of membrane separation by neural networks. J. Membr. Sci. 120 (1995) 185-191
-
(1995)
J. Membr. Sci.
, vol.120
, pp. 185-191
-
-
Niemi, H.1
Bulsari, A.2
Palosaari, S.3
-
5
-
-
0032216181
-
Prediction of the rate of crossflow membrane ultrafiltration of colloids: a neural network approach
-
Bowen W.R., Jones M.G., and Yousef H.N.S. Prediction of the rate of crossflow membrane ultrafiltration of colloids: a neural network approach. Chem. Eng. Sci. 53 22 (1998) 3793-3802
-
(1998)
Chem. Eng. Sci.
, vol.53
, Issue.22
, pp. 3793-3802
-
-
Bowen, W.R.1
Jones, M.G.2
Yousef, H.N.S.3
-
6
-
-
0032552635
-
Modelling of ultrafiltration fouling by neural network
-
Delgrange N., Cabassud C., Cabassud M., Durand-Bourlier L., and Laine J.M. Modelling of ultrafiltration fouling by neural network. Desalination 118 1-3 (1998) 213-227
-
(1998)
Desalination
, vol.118
, Issue.1-3
, pp. 213-227
-
-
Delgrange, N.1
Cabassud, C.2
Cabassud, M.3
Durand-Bourlier, L.4
Laine, J.M.5
-
7
-
-
0032508908
-
Neural networks for prediction of ultrafiltration transmembrane pressure-application to drinking water production
-
Delgrange N., Cabassud C., Cabassud M., Durand-Bourlier L., and Laine J.M. Neural networks for prediction of ultrafiltration transmembrane pressure-application to drinking water production. J. Membr. Sci. 150 (1998) 111-123
-
(1998)
J. Membr. Sci.
, vol.150
, pp. 111-123
-
-
Delgrange, N.1
Cabassud, C.2
Cabassud, M.3
Durand-Bourlier, L.4
Laine, J.M.5
-
8
-
-
0034351573
-
Neural networks for long term prediction of fouling and backwash efficiency in ultrafiltration for drinking water production
-
Delgrange-Vincent N., Cabassud C., Cabassud M., Durand-Bourlier L., and Laine J.M. Neural networks for long term prediction of fouling and backwash efficiency in ultrafiltration for drinking water production. Desalination 131 (2000) 353-362
-
(2000)
Desalination
, vol.131
, pp. 353-362
-
-
Delgrange-Vincent, N.1
Cabassud, C.2
Cabassud, M.3
Durand-Bourlier, L.4
Laine, J.M.5
-
9
-
-
0038054285
-
Predicting membrane fouling during municipal drinking water nanofiltration using artificial neural networks
-
Shetty G.R., and Chellam S. Predicting membrane fouling during municipal drinking water nanofiltration using artificial neural networks. J. Membr. Sci. 217 1-2 (2003) 69-86
-
(2003)
J. Membr. Sci.
, vol.217
, Issue.1-2
, pp. 69-86
-
-
Shetty, G.R.1
Chellam, S.2
-
10
-
-
0742305956
-
Application of neural networks for crossflow milk ultrafiltration simulation
-
Razavi M.A., Mortazavi A., and Mousavi M. Application of neural networks for crossflow milk ultrafiltration simulation. Int. Dairy J. 14 1 (2004) 69-80
-
(2004)
Int. Dairy J.
, vol.14
, Issue.1
, pp. 69-80
-
-
Razavi, M.A.1
Mortazavi, A.2
Mousavi, M.3
-
11
-
-
27744448208
-
Modeling of an reverse osmosis water desalination unit using neural networks
-
Abbas A., and Al-Bastaki N. Modeling of an reverse osmosis water desalination unit using neural networks. Chem. Eng. J. 114 (2005) 139-143
-
(2005)
Chem. Eng. J.
, vol.114
, pp. 139-143
-
-
Abbas, A.1
Al-Bastaki, N.2
-
12
-
-
20444445001
-
Artificial neural network model for transient crossflow microfiltration of polydispersed suspensions
-
Chellam S. Artificial neural network model for transient crossflow microfiltration of polydispersed suspensions. J. Membr. Sci. 258 1-2 (2005) 35-42
-
(2005)
J. Membr. Sci.
, vol.258
, Issue.1-2
, pp. 35-42
-
-
Chellam, S.1
-
13
-
-
33645931361
-
Prediction of permeate flux decline in crossflow membrane filtration of colloidal suspension: a radial basis function neural network approach
-
Chen H.Q., and Kim A.S. Prediction of permeate flux decline in crossflow membrane filtration of colloidal suspension: a radial basis function neural network approach. Desalination 192 1-3 (2006) 415-428
-
(2006)
Desalination
, vol.192
, Issue.1-3
, pp. 415-428
-
-
Chen, H.Q.1
Kim, A.S.2
-
14
-
-
33747889741
-
Predicting flux decline in crossflow membranes using artificial neural networks and genetic algorithms
-
Sahoo G.B., and Ray C. Predicting flux decline in crossflow membranes using artificial neural networks and genetic algorithms. J. Membr. Sci. 283 1-2 (2006) 147-157
-
(2006)
J. Membr. Sci.
, vol.283
, Issue.1-2
, pp. 147-157
-
-
Sahoo, G.B.1
Ray, C.2
-
15
-
-
58149177974
-
Neural network system technology in the analysis of financial time series
-
Cornelius T.L. (Ed), Kluwer Academic Publishers
-
Sitte R., and Sitte J. Neural network system technology in the analysis of financial time series. In: Cornelius T.L. (Ed). Intelligent Knowledge-based Systems, vol.5, Neural Networks, Fuzzy Theory and Genetic Algorithms (2005), Kluwer Academic Publishers 59-110
-
(2005)
Intelligent Knowledge-based Systems, vol.5, Neural Networks, Fuzzy Theory and Genetic Algorithms
, pp. 59-110
-
-
Sitte, R.1
Sitte, J.2
-
16
-
-
0037114379
-
Neural virtual sensor for the inferential prediction of product quality from process variables
-
Rallo R., Ferre-Gine J., Arenas A., and Giralt F. Neural virtual sensor for the inferential prediction of product quality from process variables. Comp. Chem. Eng. 26 (2002) 1735-1754
-
(2002)
Comp. Chem. Eng.
, vol.26
, pp. 1735-1754
-
-
Rallo, R.1
Ferre-Gine, J.2
Arenas, A.3
Giralt, F.4
-
17
-
-
0033948241
-
The simulation and interpretation of turbulence with a cognitive neural system
-
Giralt F., Arenas A., Ferre-Gine J., Rallo R., and Kopp G.A. The simulation and interpretation of turbulence with a cognitive neural system. Phys. Fluids 12 7 (2000) 1826-1835
-
(2000)
Phys. Fluids
, vol.12
, Issue.7
, pp. 1826-1835
-
-
Giralt, F.1
Arenas, A.2
Ferre-Gine, J.3
Rallo, R.4
Kopp, G.A.5
-
18
-
-
58149202640
-
-
ASTM D 4516-00, Standard Practice for Standardizing Reverse Osmosis Performance Data, in American Society of Testing Materials, 2000.
-
ASTM D 4516-00, Standard Practice for Standardizing Reverse Osmosis Performance Data, in American Society of Testing Materials, 2000.
-
-
-
-
19
-
-
58149185917
-
-
T.D. Wolfe, Membrane Process Optimization Technology, Bureau of Reclamation, Desalination and Water Purification Research and Development Report No. 100, 2003.
-
T.D. Wolfe, Membrane Process Optimization Technology, Bureau of Reclamation, Desalination and Water Purification Research and Development Report No. 100, 2003.
-
-
-
-
20
-
-
58149177975
-
-
OLI, OLI Analyzer 2.0, OLI Systems, Morris Plains, NJ, 2005.
-
OLI, OLI Analyzer 2.0, OLI Systems, Morris Plains, NJ, 2005.
-
-
-
-
21
-
-
0003410292
-
-
Prentice Hall, Upper Saddle River, NJ
-
Box G., Jenkins G.M., and Reinsel G. Time Series Analysis: Forecasting & Control. 3rd edition (1994), Prentice Hall, Upper Saddle River, NJ
-
(1994)
Time Series Analysis: Forecasting & Control. 3rd edition
-
-
Box, G.1
Jenkins, G.M.2
Reinsel, G.3
-
22
-
-
0025475020
-
An introduction to neural nets
-
Bhagat P. An introduction to neural nets. Chem. Eng. Prog. 86 8 (1990) 55-60
-
(1990)
Chem. Eng. Prog.
, vol.86
, Issue.8
, pp. 55-60
-
-
Bhagat, P.1
-
24
-
-
0003798627
-
-
Schölkoft B., Burges C.J.C., and Smola A.J. (Eds), MIT Press, Cambridge
-
In: Schölkoft B., Burges C.J.C., and Smola A.J. (Eds). Advances in Kernel Methods: Support Vector Learning (1999), MIT Press, Cambridge
-
(1999)
Advances in Kernel Methods: Support Vector Learning
-
-
-
25
-
-
34848824629
-
Applications of support vector machines in chemistry
-
Lipkowitz K.B., and Cundari T.R. (Eds), Wiley-VCH, Weinheim
-
Ivanciuc O. Applications of support vector machines in chemistry. In: Lipkowitz K.B., and Cundari T.R. (Eds). Reviews in Computational Chemistry vol. 23 (2007), Wiley-VCH, Weinheim 291-400
-
(2007)
Reviews in Computational Chemistry
, vol.23
, pp. 291-400
-
-
Ivanciuc, O.1
-
27
-
-
0026980087
-
How Neural Networks Learn from Experience
-
Hinton G.E. How Neural Networks Learn from Experience. Sci. Am. 267 3 (1992) 145-151
-
(1992)
Sci. Am.
, vol.267
, Issue.3
, pp. 145-151
-
-
Hinton, G.E.1
-
28
-
-
0027576905
-
Use neural networks for problem-solving
-
Chitra S.P. Use neural networks for problem-solving. Chem. Eng. Prog. 89 4 (1993) 44-52
-
(1993)
Chem. Eng. Prog.
, vol.89
, Issue.4
, pp. 44-52
-
-
Chitra, S.P.1
-
29
-
-
0038724207
-
The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models
-
Tropsha A., Gramatica P., and Gombar V.K. The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb. Sci. 22 1 (2003) 69-77
-
(2003)
QSAR Comb. Sci.
, vol.22
, Issue.1
, pp. 69-77
-
-
Tropsha, A.1
Gramatica, P.2
Gombar, V.K.3
-
30
-
-
0003490549
-
-
Springer Verlag, Berlin
-
Carbo-Dorca R., Robert D., Amat Ll., Girones X., and Besalu E. Molecular Quantum Similarity in QSAR and Drug Design, Lectures Notes in Chemistry vol. 73 (2000), Springer Verlag, Berlin
-
(2000)
Molecular Quantum Similarity in QSAR and Drug Design, Lectures Notes in Chemistry
, vol.73
-
-
Carbo-Dorca, R.1
Robert, D.2
Amat, Ll.3
Girones, X.4
Besalu, E.5
-
31
-
-
77956742952
-
-
A. Tropsha, Variable selection QSAR modeling, model validation, and virtual screening, in: Y. Martin (Ed.), Ann. Rev. Comp. Chem., Chapters 4 and 7, Elsevier, 2006, pp. 113-126.
-
A. Tropsha, Variable selection QSAR modeling, model validation, and virtual screening, in: Y. Martin (Ed.), Ann. Rev. Comp. Chem., Chapters 4 and 7, Elsevier, 2006, pp. 113-126.
-
-
-
-
32
-
-
58149177972
-
-
Guidance Document on the Validation of (Quantitative) Structure-Activity Relationships [(Q)SAR] Models, Organization for Economic Cooperation and Development, Paris, 2007.
-
Guidance Document on the Validation of (Quantitative) Structure-Activity Relationships [(Q)SAR] Models, Organization for Economic Cooperation and Development, Paris, 2007.
-
-
-
-
33
-
-
0345404396
-
The self-organizing map
-
Kohonen T. The self-organizing map. Neurocomputing 21 1-3 (1998) 1-6
-
(1998)
Neurocomputing
, vol.21
, Issue.1-3
, pp. 1-6
-
-
Kohonen, T.1
-
34
-
-
0025489075
-
The Self-Organizing Map
-
Kohonen T. The Self-Organizing Map. Proc. IEEE 78 9 (1990) 1464-1480
-
(1990)
Proc. IEEE
, vol.78
, Issue.9
, pp. 1464-1480
-
-
Kohonen, T.1
-
36
-
-
0036221122
-
Optimal division of data for neural network models in water resources applications
-
Bowden G.J., Maier H.R., and Dandy G.C. Optimal division of data for neural network models in water resources applications. Water Resour. Res. 38 2 (2002) 2.1-2.11
-
(2002)
Water Resour. Res.
, vol.38
, Issue.2
-
-
Bowden, G.J.1
Maier, H.R.2
Dandy, G.C.3
|