|
Volumn 18, Issue 5, 2010, Pages 574-588
|
Modeling of a proton exchange membrane fuel cell based on the hybrid particle swarm optimization with Levenberg-Marquardt neural network
|
Author keywords
Dynamic behavior; Hybrid particle swarm optimization with Levenberg Marquardt neural network; Modeling; Proton exchange membrane fuel cell
|
Indexed keywords
COMPLEX NONLINEAR DYNAMICS;
CONVERGENT SPEED;
DYNAMIC BEHAVIORS;
FUEL CELL DESIGNS;
GLOBAL OPTIMUM;
GLOBAL SEARCH;
HYBRID ALGORITHMS;
HYBRID PARTICLE SWARM OPTIMIZATION;
INITIAL STAGES;
LEVENBERG-MARQUARDT;
LEVENBERG-MARQUARDT ALGORITHM;
LM ALGORITHM;
LOCAL MINIMUMS;
MODEL TRAINING;
NEURAL NETWORK MODELING;
NONLINEAR AUTOREGRESSIVE MODEL;
NONLINEAR MODELING;
PHYSICAL MODEL;
PROTON EXCHANGE MEMBRANES;
PSO ALGORITHMS;
TEMPERATURE MODELS;
VALIDATION TEST;
ALGORITHMS;
DAMAGE DETECTION;
DYNAMIC MODELS;
DYNAMICAL SYSTEMS;
LAGRANGE MULTIPLIERS;
MEMBRANES;
MODELS;
PARTICLE SWARM OPTIMIZATION (PSO);
PROTON EXCHANGE MEMBRANE FUEL CELLS (PEMFC);
PROTONS;
THREE TERM CONTROL SYSTEMS;
NEURAL NETWORKS;
|
EID: 77249105911
PISSN: 1569190X
EISSN: None
Source Type: Journal
DOI: 10.1016/j.simpat.2010.01.001 Document Type: Article |
Times cited : (44)
|
References (18)
|