메뉴 건너뛰기




Volumn 144, Issue 1, 2011, Pages 171-197

An Energy Transport Model Describing Heat Generation and Conduction in Silicon Semiconductors

Author keywords

Boltzmann equation; Electron phonon system; Maximum Entropy Principle; Semiconductors; Thermal effects

Indexed keywords


EID: 79960463052     PISSN: 00224715     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10955-011-0247-2     Document Type: Article
Times cited : (37)

References (38)
  • 1
    • 0025512595 scopus 로고
    • Rigorous thermodynamic treatment of the heat generation and conduction in semiconductor device modeling
    • Wachutka, G. K.: Rigorous thermodynamic treatment of the heat generation and conduction in semiconductor device modeling. IEEE Trans. Electron Devices 9, 1141-1149 (1990).
    • (1990) IEEE Trans. Electron Devices , vol.9 , pp. 1141-1149
    • Wachutka, G.K.1
  • 4
    • 74849134479 scopus 로고    scopus 로고
    • Anharmonic decay of non-equilibrium intervalley phonons in silicon
    • Aksamija, Z., Ravaioli, U.: Anharmonic decay of non-equilibrium intervalley phonons in silicon. J. Phys. Conf. Ser. 193, 012033 (2009).
    • (2009) J. Phys. Conf. Ser. , vol.193 , pp. 012033
    • Aksamija, Z.1    Ravaioli, U.2
  • 5
    • 47649085966 scopus 로고    scopus 로고
    • Transport Equations for Semiconductors
    • Berlin: Springer
    • Jüngel, A.: Transport Equations for Semiconductors. Lecture Notes in Physics, vol. 773. Springer, Berlin (2009).
    • (2009) Lecture Notes in Physics , vol.773
    • Jüngel, A.1
  • 6
    • 0030537690 scopus 로고    scopus 로고
    • On a hierarchy of macroscopic models for semiconductors
    • Abdallah, N. Ben, Degond, P.: On a hierarchy of macroscopic models for semiconductors. J. Math. Phys., 37(7), 3306-3333 (1996).
    • (1996) J. Math. Phys. , vol.37 , Issue.7 , pp. 3306-3333
    • Abdallah, N.B.1    Degond, P.2
  • 7
    • 0035690629 scopus 로고    scopus 로고
    • Simulation of submicron silicon diodes with a non-parabolic hydrodynamical model based on the maximum entropy principle
    • Muscato, O., Romano, V.: Simulation of submicron silicon diodes with a non-parabolic hydrodynamical model based on the maximum entropy principle. VLSI DESIGN 13, 273-279 (2001).
    • (2001) VLSI DESIGN , vol.13 , pp. 273-279
    • Muscato, O.1    Romano, V.2
  • 8
    • 18144366409 scopus 로고    scopus 로고
    • Simulation of Gunn oscillations with a non-parabolic hydrodynamical model based on the Maximum Entropy Principle
    • Mascali, G., Romano, V.: Simulation of Gunn oscillations with a non-parabolic hydrodynamical model based on the Maximum Entropy Principle. Compel, 24(1), 35-54 (2005).
    • (2005) Compel , vol.24 , Issue.1 , pp. 35-54
    • Mascali, G.1    Romano, V.2
  • 9
    • 24144478535 scopus 로고    scopus 로고
    • MEP parabolic hydrodynamical model for holes in silicon semiconductors
    • Mascali, G., Romano, V., Sellier, J. M.: MEP parabolic hydrodynamical model for holes in silicon semiconductors. Nuovo Cimento B, 120(2), 197-215 (2005).
    • (2005) Nuovo Cimento B , vol.120 , Issue.2 , pp. 197-215
    • Mascali, G.1    Romano, V.2    Sellier, J.M.3
  • 10
    • 68349124961 scopus 로고    scopus 로고
    • Exact maximum entropy closure of the hydrodynamical model for Si semiconductors: the 8-moment case
    • La Rosa, S., Mascali, G., Romano, V.: Exact maximum entropy closure of the hydrodynamical model for Si semiconductors: the 8-moment case. SIAM J. Appl. Math. 70, 710 (2009).
    • (2009) SIAM J. Appl. Math. , vol.70 , pp. 710
    • la Rosa, S.1    Mascali, G.2    Romano, V.3
  • 11
    • 77958484212 scopus 로고    scopus 로고
    • A hydrodynamic model for hole transport in silicon semiconductors: the case of warped non-parabolic bands
    • Mascali, G., Romano, V.: A hydrodynamic model for hole transport in silicon semiconductors: the case of warped non-parabolic bands. Math. Comput. Model. 53, 213-229 (2011).
    • (2011) Math. Comput. Model. , vol.53 , pp. 213-229
    • Mascali, G.1    Romano, V.2
  • 12
    • 0030186891 scopus 로고    scopus 로고
    • An energy-transport model for semiconductors derived from the Boltzmann equation
    • Abdallah, N. Ben, Degond, P., Génieys, S.: An energy-transport model for semiconductors derived from the Boltzmann equation. J. Stat. Phys. 84, 205-231 (1996).
    • (1996) J. Stat. Phys. , vol.84 , pp. 205-231
    • Abdallah, N.B.1    Degond, P.2    Génieys, S.3
  • 13
    • 77951184785 scopus 로고    scopus 로고
    • Energy transport in semiconductor devices
    • Jüngel, A.: Energy transport in semiconductor devices. Math. Comput. Model. Dyn. Syst. 16, 1-22 (2010).
    • (2010) Math. Comput. Model. Dyn. Syst. , vol.16 , pp. 1-22
    • Jüngel, A.1
  • 18
    • 35949025517 scopus 로고
    • The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials
    • Jacoboni, C., Reggiani, L.: The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Rev. Mod. Phys. 55, 645-705 (1983).
    • (1983) Rev. Mod. Phys. , vol.55 , pp. 645-705
    • Jacoboni, C.1    Reggiani, L.2
  • 19
    • 0033438601 scopus 로고    scopus 로고
    • Nonparabolic band transport in semiconductors: closure of the moment equations
    • Anile, A. M., Romano, V.: Nonparabolic band transport in semiconductors: closure of the moment equations. Contin. Mech. Thermodyn. 11, 307-325 (1999).
    • (1999) Contin. Mech. Thermodyn. , vol.11 , pp. 307-325
    • Anile, A.M.1    Romano, V.2
  • 20
    • 58149265443 scopus 로고    scopus 로고
    • Modeling heat generation in a submicrometric n+-n-n+ silicon diode
    • Muscato, O., Di Stefano, V.: Modeling heat generation in a submicrometric n+-n-n+ silicon diode. J. Appl. Phys. 104, 124501 (2008).
    • (2008) J. Appl. Phys. , vol.104 , pp. 124501
    • Muscato, O.1    Di Stefano, V.2
  • 21
    • 33748548036 scopus 로고    scopus 로고
    • Partial moment entropy approximation to radiative heat transfer
    • Frank, M., Dubroca, B., Klar, A.: Partial moment entropy approximation to radiative heat transfer. J. Comput. Phys. 218, 1-18 (2006).
    • (2006) J. Comput. Phys. , vol.218 , pp. 1-18
    • Frank, M.1    Dubroca, B.2    Klar, A.3
  • 23
    • 51249168226 scopus 로고
    • Symmetric conservative form of low-temperature phonon gas hydrodynamics
    • Larecki, W.: Symmetric conservative form of low-temperature phonon gas hydrodynamics. Nuovo Cimento D 14(2), 141-176 (1992).
    • (1992) Nuovo Cimento D , vol.14 , Issue.2 , pp. 141-176
    • Larecki, W.1
  • 24
    • 25444486980 scopus 로고    scopus 로고
    • Nine-momentum phonon hydrodynamics based on the maximum-entropy closure: one-dimensional flow
    • Banach, Z., Larecki, W.: Nine-momentum phonon hydrodynamics based on the maximum-entropy closure: one-dimensional flow. J. Phys. A 38, 8781-8802 (2005).
    • (2005) J. Phys. A , vol.38 , pp. 8781-8802
    • Banach, Z.1    Larecki, W.2
  • 25
    • 78649558670 scopus 로고    scopus 로고
    • Consistency of the phenomenological theories of wave-type heat transport with the hydrodynamics of a phonon gas
    • Larecki, W., Banach, Z.: Consistency of the phenomenological theories of wave-type heat transport with the hydrodynamics of a phonon gas. J. Phys. A, Math. Theor. 43, 385501 (2010).
    • (2010) J. Phys. A, Math. Theor. , vol.43 , pp. 385501
    • Larecki, W.1    Banach, Z.2
  • 29
    • 0000783469 scopus 로고
    • Temperature dependence of first-order Raman scattering by phonons in Si, Ge, and α-Sn: anharmonic effects
    • Manendez, J., Cardona, M.: Temperature dependence of first-order Raman scattering by phonons in Si, Ge, and α-Sn: anharmonic effects. Phys. Rev. B 29, 2051-2059 (1984).
    • (1984) Phys. Rev. B , vol.29 , pp. 2051-2059
    • Manendez, J.1    Cardona, M.2
  • 30
    • 0001187605 scopus 로고    scopus 로고
    • Concurrent thermal and electrical modeling of sub-micrometric silicon devices
    • Lai, J., Majumdar, A.: Concurrent thermal and electrical modeling of sub-micrometric silicon devices. J. Appl. Phys. 79, 7353-7361 (1996).
    • (1996) J. Appl. Phys. , vol.79 , pp. 7353-7361
    • Lai, J.1    Majumdar, A.2
  • 31
    • 36149027857 scopus 로고
    • Analysis of lattice thermal conductivity
    • Holland, M. G.: Analysis of lattice thermal conductivity. Phys. Rev. 132(6), 2461-2471 (1963).
    • (1963) Phys. Rev. , vol.132 , Issue.6 , pp. 2461-2471
    • Holland, M.G.1
  • 32
    • 0001246055 scopus 로고    scopus 로고
    • Phonon scattering in silicon films with thickness of order 100 nm
    • Ju, Y. S., Goodson, K. E.: Phonon scattering in silicon films with thickness of order 100 nm. Appl. Phys. Lett., 74(20), 3005-3007 (1999).
    • (1999) Appl. Phys. Lett. , vol.74 , Issue.20 , pp. 3005-3007
    • Ju, Y.S.1    Goodson, K.E.2
  • 33
    • 33845692228 scopus 로고    scopus 로고
    • Heat generation and transport in nanometer scale transistors
    • Pop, E., Sinha, S., Goodson, K.: Heat generation and transport in nanometer scale transistors. Proc. IEEE 94(8), 1587-1601 (2006).
    • (2006) Proc. IEEE , vol.94 , Issue.8 , pp. 1587-1601
    • Pop, E.1    Sinha, S.2    Goodson, K.3
  • 34
    • 79952023134 scopus 로고    scopus 로고
    • Extended hydrodynamic model for the coupled electron-phonon system in silicon semiconductors
    • N. Manganaro (Ed.), Singapore: World Scientific
    • Muscato, O., Di Stefano, V., Milazzo, C.: Extended hydrodynamic model for the coupled electron-phonon system in silicon semiconductors. In: N. Manganaro et al. (eds.) Proceedings WASCOM 2007, World Scientific, Singapore (2008).
    • (2008) Proceedings WASCOM 2007
    • Muscato, O.1    Di Stefano, V.2    Milazzo, C.3
  • 35
    • 0003225199 scopus 로고
    • Heat generation in semiconductor devices
    • Lindefelt, U.: Heat generation in semiconductor devices. J. Appl. Phys. 75(2), 942-957 (1994).
    • (1994) J. Appl. Phys. , vol.75 , Issue.2 , pp. 942-957
    • Lindefelt, U.1
  • 36
    • 0020087475 scopus 로고
    • Electron and hole mobilities in Silicon as a function of concentration and temperature
    • Arora, N. D., Hauser, J. R., Roulston, D. J.: Electron and hole mobilities in Silicon as a function of concentration and temperature. IEEE Trans. Electron Devices, 29(2), 292-295 (1982).
    • (1982) IEEE Trans. Electron Devices , vol.29 , Issue.2 , pp. 292-295
    • Arora, N.D.1    Hauser, J.R.2    Roulston, D.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.