-
1
-
-
0000521616
-
Superparamagnetic clustering of data
-
Blatt, M., Wiseman, S., and Domany, E. (1996). Superparamagnetic clustering of data. Phys. Rev. Lett. 76, 3251-3254.
-
(1996)
Phys. Rev. Lett
, vol.76
, pp. 3251-3254
-
-
Blatt, M.1
Wiseman, S.2
Domany, E.3
-
2
-
-
84890872627
-
PyMVPA: A unifying approach to the analysis of neuroscientifi c data
-
doi: 10.3389/neuro.11.003.2009
-
Hanke, M., Halchenko, Y.O., Sederberg, P. B., Olivetti, E., Fründ, I., Rieger, J.W., Herrmann, C. S., Haxby, J. V., Hanson, S., and Pollmann, S. (2009). PyMVPA: a unifying approach to the analysis of neuroscientifi c data. Front. Neuroinform. 3,3. doi: 10.3389/neuro.11.003.2009.
-
(2009)
Front. Neuroinform
, vol.3
, pp. 3
-
-
Hanke, M.1
Halchenko, Y.O.2
Sederberg, P.B.3
Olivetti, E.4
Fründ, I.5
Rieger, J.W.6
Herrmann, C.S.7
Haxby, J.V.8
Hanson, S.9
Pollmann, S.10
-
3
-
-
74349121745
-
Python for information theoretic analysis of neural data
-
doi: 10.3389/neuro.11.004.2009
-
Ince, R. A., Petersen, R. S., Swan, D. C., and Panzeri, S. (2009). Python for information theoretic analysis of neural data. Front. Neuroinform. 3,4. doi: 10.3389/neuro.11.004.2009.
-
(2009)
Front. Neuroinform
, vol.3
, pp. 4
-
-
Ince, R.A.1
Petersen, R.S.2
Swan, D.C.3
Panzeri, S.4
-
4
-
-
0013130627
-
A review of methods for spike sorting: The detection and classification of neural action potentials
-
Lewicki, M. S. (1998). A review of methods for spike sorting: the detection and classification of neural action potentials. Network 9, R53-R78.
-
(1998)
Network
, vol.9
-
-
Lewicki, M.S.1
-
5
-
-
53449093383
-
Strong coupling between pyramidal cell activity and network oscillations in the olfactory cortex
-
Litaudon, P., Garcia, S., and Buonviso, N. (2008). Strong coupling between pyramidal cell activity and network oscillations in the olfactory cortex. Neuroscience 156, 781-787.
-
(2008)
Neuroscience
, vol.156
, pp. 781-787
-
-
Litaudon, P.1
Garcia, S.2
Buonviso, N.3
-
6
-
-
2442479355
-
Improved spikesorting by modeling fi ring statistics and burst-dependent spike amplitude attenuation: A Markov chain Monte Carlo approach
-
Pouzat, C., Delescluse, M., Viot, P., and Diebolt, J. (2004). Improved spikesorting by modeling fi ring statistics and burst-dependent spike amplitude attenuation: a Markov chain Monte Carlo approach. J. Neurophysiol. 91, 2910-2928.
-
(2004)
J. Neurophysiol
, vol.91
, pp. 2910-2928
-
-
Pouzat, C.1
Delescluse, M.2
Viot, P.3
Diebolt, J.4
-
8
-
-
33846308515
-
A waveletbased method for local phase extraction from a multi- frequency oscillatory signal
-
Roux, S. G., Cenier, T., Garcia, S., Litaudon, P., and Buonviso, N. (2007). A waveletbased method for local phase extraction from a multi- frequency oscillatory signal. J. Neurosci. Methods 160, 135-143.
-
(2007)
J. Neurosci. Methods
, vol.160
, pp. 135-143
-
-
Roux, S.G.1
Cenier, T.2
Garcia, S.3
Litaudon, P.4
Buonviso, N.5
-
9
-
-
34047105291
-
A non-parametric Bayesian approach to spike sorting
-
Wood, F., Goldwater, S., and Black, M. J. (2006). A non-parametric Bayesian approach to spike sorting. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1, 1165-1168.
-
(2006)
Conf. Proc. IEEE Eng. Med. Biol. Soc
, vol.1
, pp. 1165-1168
-
-
Wood, F.1
Goldwater, S.2
Black, M.J.3
-
10
-
-
84890885963
-
Modular toolkit for data processing (MDP): A Python data processing framework
-
doi: 10.3389/neuro.11.008.2008
-
Zito, T., Wilbert, N., Wiskott, L., and Berkes, P. (2008). Modular toolkit for data processing (MDP): a Python data processing framework. Front. Neuroinform. 2, 8. doi: 10.3389/neuro.11.008.2008.
-
(2008)
Front. Neuroinform
, vol.2
, pp. 8
-
-
Zito, T.1
Wilbert, N.2
Wiskott, L.3
Berkes, P.4
|