메뉴 건너뛰기




Volumn 91, Issue 6, 2004, Pages 2910-2928

Improved spike-sorting by modeling firing statistics and burst-dependent spike amplitude attenuation: A Markov chain Monte Carlo approach

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; ATTENUATION; EPILEPTIC DISCHARGE; IMAGE RECONSTRUCTION; MATHEMATICAL MODEL; MONTE CARLO METHOD; NERVE CELL; NERVE CONDUCTION; NOISE REDUCTION; PHYSICS; PRIORITY JOURNAL; PROBABILITY; SPIKE; SPIKE WAVE; STATISTICS; WAVEFORM;

EID: 2442479355     PISSN: 00223077     EISSN: None     Source Type: Journal    
DOI: 10.1152/jn.00227.2003     Document Type: Article
Times cited : (58)

References (43)
  • 1
    • 0000108918 scopus 로고    scopus 로고
    • Bayesian inference for ion-channel gating mechanisms directly from single-channel recordings, using Markov chain Monte Carlo
    • Ball FG, Cal Y, Kadane JB, and O'Hagan A. Bayesian inference for ion-channel gating mechanisms directly from single-channel recordings, using Markov chain Monte Carlo. Proc R Soc Lond A Phys Sci 455: 2879-2932, 1999.
    • (1999) Proc R Soc Lond A Phys Sci , vol.455 , pp. 2879-2932
    • Ball, F.G.1    Cal, Y.2    Kadane, J.B.3    O'Hagan, A.4
  • 2
    • 0004020370 scopus 로고    scopus 로고
    • Working Paper No. 9. Seattle, WA: Center for Statistics and Social Sciences, Univ. of Washington [28 Nov.]
    • Besag J. Markov Chain Monte Carlo for Statistical Inference [online]. Working Paper No. 9. Seattle, WA: Center for Statistics and Social Sciences, Univ. of Washington, 2001. http://www.csss.washington.edu/Papers/wp9.pdf [28 Nov. 2003].
    • (2001) Markov Chain Monte Carlo for Statistical Inference [Online]
    • Besag, J.1
  • 3
    • 0043230411 scopus 로고
    • Spin glasses: Experimental facts, theoretical concepts and open questions
    • Binder K and Young AP. Spin glasses: experimental facts, theoretical concepts and open questions. Rev Mod Phys 58: 801-976, 1986.
    • (1986) Rev Mod Phys , vol.58 , pp. 801-976
    • Binder, K.1    Young, A.P.2
  • 5
    • 2242491935 scopus 로고    scopus 로고
    • Computational and inferential difficulties with mixture posterior distributions
    • Celeux G, Hurn M, and Robert C. Computational and inferential difficulties with mixture posterior distributions. J Am Stat Assoc 95: 957-970, 2000.
    • (2000) J Am Stat Assoc , vol.95 , pp. 957-970
    • Celeux, G.1    Hurn, M.2    Robert, C.3
  • 6
    • 0042656263 scopus 로고    scopus 로고
    • A biased Monte Carlo scheme for zeolite structure solution
    • Falcioni M and Deem MW. A biased Monte Carlo scheme for zeolite structure solution. J Chem Phys 110: 1754-1766, 1999.
    • (1999) J Chem Phys , vol.110 , pp. 1754-1766
    • Falcioni, M.1    Deem, M.W.2
  • 7
    • 0030297850 scopus 로고    scopus 로고
    • Automatic sorting of multiple-unit neuronal signals in the presence of anisotropic and non-Gaussian variability
    • Fee MS, Mitra PP, and Kleinfeld D. Automatic sorting of multiple-unit neuronal signals in the presence of anisotropic and non-Gaussian variability. J Neurosci Methods 69: 175-188, 1996a.
    • (1996) J Neurosci Methods , vol.69 , pp. 175-188
    • Fee, M.S.1    Mitra, P.P.2    Kleinfeld, D.3
  • 8
    • 0030480277 scopus 로고    scopus 로고
    • Variability of extracellular spike waveforms of cortical neurons
    • Fee MS, Mitra PP, and Kleinfeld D. Variability of extracellular spike waveforms of cortical neurons. J Neurophysiol 76: 3823-3833, 1996b.
    • (1996) J Neurophysiol , vol.76 , pp. 3823-3833
    • Fee, M.S.1    Mitra, P.P.2    Kleinfeld, D.3
  • 12
    • 0000736067 scopus 로고    scopus 로고
    • Simulating normalizing constants: From importance sampling to bridge sampling to path sampling
    • Gelman A and Meng XL. Simulating normalizing constants: from importance sampling to bridge sampling to path sampling. Stat Sci 13: 163-185, 1998.
    • (1998) Stat Sci , vol.13 , pp. 163-185
    • Gelman, A.1    Meng, X.L.2
  • 13
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images
    • Geman S and Geman D. Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 6: 721-741, 1984.
    • (1984) IEEE Trans Pattern Anal Mach Intell , vol.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 14
    • 0029623039 scopus 로고
    • Tetrodes markedly improve the reliability and yield of multiple single-unit isolation from multi-unit recordings in cat striate cortex
    • Gray CM, Maldonado PE, Wilson M, and McNaughton B. Tetrodes markedly improve the reliability and yield of multiple single-unit isolation from multi-unit recordings in cat striate cortex. J Neurosci Methods 63: 43-54, 1995.
    • (1995) J Neurosci Methods , vol.63 , pp. 43-54
    • Gray, C.M.1    Maldonado, P.E.2    Wilson, M.3    McNaughton, B.4
  • 15
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • Green PJ. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82: 711-732, 1995.
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.J.1
  • 16
    • 0031578972 scopus 로고    scopus 로고
    • Parallel tempering algorithm for conformational studies of biological molecules
    • Hansmann UHE. Parallel tempering algorithm for conformational studies of biological molecules. Chem Phys Lett 281: 140-150, 1997.
    • (1997) Chem Phys Lett , vol.281 , pp. 140-150
    • Hansmann, U.H.E.1
  • 17
    • 0033928411 scopus 로고    scopus 로고
    • Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements
    • Harris KD, Henze DA, Csicsvari J, Hirase H, and Buzsaki G. Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. J Neurophysiol 84: 401-414, 2000.
    • (2000) J Neurophysiol , vol.84 , pp. 401-414
    • Harris, K.D.1    Henze, D.A.2    Csicsvari, J.3    Hirase, H.4    Buzsaki, G.5
  • 18
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • Hastings WK. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57: 92-109, 1970.
    • (1970) Biometrika , vol.57 , pp. 92-109
    • Hastings, W.K.1
  • 19
    • 0030516672 scopus 로고    scopus 로고
    • Exchange Monte Carlo and application to spin glass simulations
    • Hukushima K and Nemoto K. Exchange Monte Carlo and application to spin glass simulations. J Phys Soc Jpn 65: 1604-1608, 1996.
    • (1996) J Phys Soc Jpn , vol.65 , pp. 1604-1608
    • Hukushima, K.1    Nemoto, K.2
  • 20
    • 0035600220 scopus 로고    scopus 로고
    • Extended ensemble Monte Carlo
    • Iba Y. Extended ensemble Monte Carlo. Int J Mod Phys C 12: 623-656, 2001.
    • (2001) Int J Mod Phys C , vol.12 , pp. 623-656
    • Iba, Y.1
  • 22
    • 0030447513 scopus 로고    scopus 로고
    • Point process models of single-neuron discharges
    • Johnson DH. Point process models of single-neuron discharges. J Comput Neurosci 3: 275-299, 1996.
    • (1996) J Comput Neurosci , vol.3 , pp. 275-299
    • Johnson, D.H.1
  • 23
    • 0022646020 scopus 로고
    • Application of a point process model to responses of cat lateral superior olive units to ipsilateral tones
    • Johnson DH, Tsuchitani C, Linebarger DA, and Johnson MJ. Application of a point process model to responses of cat lateral superior olive units to ipsilateral tones. Hearing Res 21: 135-159, 1986.
    • (1986) Hearing Res , vol.21 , pp. 135-159
    • Johnson, D.H.1    Tsuchitani, C.2    Linebarger, D.A.3    Johnson, M.J.4
  • 25
    • 0000960284 scopus 로고
    • Bayesian modeling and classification of neural signals
    • Lewicki MS. Bayesian modeling and classification of neural signals. Neural Comput 6: 1005-1030, 1994.
    • (1994) Neural Comput , vol.6 , pp. 1005-1030
    • Lewicki, M.S.1
  • 26
    • 0013130627 scopus 로고    scopus 로고
    • A review of methods for spike-sorting: The detection and classification of neural action potentials
    • Lewicki MS. A review of methods for spike-sorting: the detection and classification of neural action potentials. Network Comput Neural Syst 9: R53-R78, 1998.
    • (1998) Network Comput Neural Syst , vol.9
    • Lewicki, M.S.1
  • 28
    • 0031599142 scopus 로고    scopus 로고
    • Mersenne twister: A 623-dimensionally equidistributed uniform pseudorandom number generator
    • Matsumoto M and Nishimura T. Mersenne twister: a 623-dimensionally equidistributed uniform pseudorandom number generator. ACM Trans Model Comput Simul 8: 3-30, 1998.
    • (1998) ACM Trans Model Comput Simul , vol.8 , pp. 3-30
    • Matsumoto, M.1    Nishimura, T.2
  • 30
    • 0034864528 scopus 로고    scopus 로고
    • Generalized-ensemble algorithms for molecular simulations of biopolymers
    • Mitsutake A, Sugita Y, and Okamoto Y. Generalized-ensemble algorithms for molecular simulations of biopolymers. Biopolymers 60: 96-123, 2001.
    • (2001) Biopolymers , vol.60 , pp. 96-123
    • Mitsutake, A.1    Sugita, Y.2    Okamoto, Y.3
  • 32
    • 0004087397 scopus 로고
    • Technical Report CRG-TR-93-1. Toronto, Canada: Department of Computer Science, Univ. of Toronto. [28 Nov.]
    • Neal RM. Probabilistic Inference Using Markov Chain Monte Carlo Methods [online]. Technical Report CRG-TR-93-1. Toronto, Canada: Department of Computer Science, Univ. of Toronto, 1993. http://www.es.toronto.edu/~radford/papers-online.html [28 Nov. 2003].
    • (1993) Probabilistic Inference Using Markov Chain Monte Carlo Methods [Online]
    • Neal, R.M.1
  • 33
    • 0041667362 scopus 로고
    • Technical Report No. 9421. Toronto, Canada: Department of Statistics, Univ. of Toronto. [28 Nov.]
    • Neal RM. Sampling from Multimodal Distributions Using Tempered Transitions [online]. Technical Report No. 9421. Toronto, Canada: Department of Statistics, Univ. of Toronto, 1994. http://www.cs.toronto.edu/~radford/papers-online.html [28 Nov. 2003].
    • (1994) Sampling from Multimodal Distributions Using Tempered Transitions [Online]
    • Neal, R.M.1
  • 35
    • 0348147518 scopus 로고    scopus 로고
    • An application of reversible-jump Markov chain Monte Carlo to spike classification of multi-unit extracellular recordings
    • Nguyen DP, Frank LM, and Brown EN. An application of reversible-jump Markov chain Monte Carlo to spike classification of multi-unit extracellular recordings. Network Comput Neural Syst 14: 61-82, 2003.
    • (2003) Network Comput Neural Syst , vol.14 , pp. 61-82
    • Nguyen, D.P.1    Frank, L.M.2    Brown, E.N.3
  • 36
    • 0037207286 scopus 로고    scopus 로고
    • Using noise signature to optimize spike-sorting and to assess neuronal classification quality
    • Pouzat C, Mazor O, and Laurent G. Using noise signature to optimize spike-sorting and to assess neuronal classification quality. J Neurosci Methods 122: 43-57, 2002.
    • (2002) J Neurosci Methods , vol.122 , pp. 43-57
    • Pouzat, C.1    Mazor, O.2    Laurent, G.3
  • 37
    • 0032743116 scopus 로고    scopus 로고
    • Interaction between spike waveform classification and temporal sequence detection
    • Quirk MC and Wilson MA. Interaction between spike waveform classification and temporal sequence detection. J Neurosci Methods 94: 41-52, 1999.
    • (1999) J Neurosci Methods , vol.94 , pp. 41-52
    • Quirk, M.C.1    Wilson, M.A.2
  • 39
    • 20644463913 scopus 로고    scopus 로고
    • Bayesian restoration of ion channel records using hidden Markov models
    • Rosales R, Stark A, Fitzgerald WJ, and Hladky SB. Bayesian restoration of ion channel records using hidden Markov models. Biophys J 80: 1088-1103, 2001.
    • (2001) Biophys J , vol.80 , pp. 1088-1103
    • Rosales, R.1    Stark, A.2    Fitzgerald, W.J.3    Hladky, S.B.4
  • 42
    • 0042492825 scopus 로고
    • The Potts model
    • Wu FY. The Potts model. Rev Mod Phys 54: 235-268, 1982.
    • (1982) Rev Mod Phys , vol.54 , pp. 235-268
    • Wu, F.Y.1
  • 43
    • 0001399419 scopus 로고    scopus 로고
    • Hyper-parallel tempering Monte Carlo: Application to the Lennard-Jones fluid and the restricted primitive model
    • Yan Q and de Pablo JJ. Hyper-parallel tempering Monte Carlo: application to the Lennard-Jones fluid and the restricted primitive model. J Chem Phys 111: 9509-9516, 1999.
    • (1999) J Chem Phys , vol.111 , pp. 9509-9516
    • Yan, Q.1    De Pablo, J.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.