메뉴 건너뛰기




Volumn 62, Issue 2, 2011, Pages 755-769

A collocation approach for solving systems of linear Volterra integral equations with variable coefficients

Author keywords

Collocation method; Collocation points; System of Volterra integral equations; The Bessel polynomials and series

Indexed keywords

ANALYTIC SOLUTION; BESSEL POLYNOMIALS; COLLOCATION METHOD; COLLOCATION POINTS; EXACT SOLUTION; LINEAR VOLTERRA INTEGRAL EQUATION; MATRIX EQUATIONS; NUMERICAL COMPUTATIONS; NUMERICAL EXAMPLE; SYSTEM OF LINEAR EQUATIONS; VARIABLE COEFFICIENTS; VOLTERRA INTEGRAL EQUATIONS;

EID: 79960173273     PISSN: 08981221     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.camwa.2011.05.057     Document Type: Article
Times cited : (48)

References (27)
  • 1
    • 0034517076 scopus 로고    scopus 로고
    • Perspective on the numerical treatment of Volterra equations
    • DOI 10.1016/S0377-0427(00)00470-2
    • C.T.H. Baker A perspective on the numerical treatment of Volterra equations J. Comput. Appl. Math. 125 2000 217 249 (Pubitemid 32034876)
    • (2000) Journal of Computational and Applied Mathematics , vol.125 , Issue.1-2 , pp. 217-249
    • Baker, C.T.H.1
  • 3
    • 42949104677 scopus 로고    scopus 로고
    • A homotopy perturbation algorithm to solve a system of FredholmVolterra type integral equations
    • E. Yusufolu A homotopy perturbation algorithm to solve a system of FredholmVolterra type integral equations Math. Comput. Modelling 47 2008 1099 1107
    • (2008) Math. Comput. Modelling , vol.47 , pp. 1099-1107
    • Yusufolu, E.1
  • 4
    • 34548459893 scopus 로고    scopus 로고
    • An efficient algorithm for solving integro-differential equations system
    • E. Yusufolu An efficient algorithm for solving integro-differential equations system Appl. Math. Comput. 192 2007 51 55
    • (2007) Appl. Math. Comput. , vol.192 , pp. 51-55
    • Yusufolu, E.1
  • 5
    • 67349159410 scopus 로고    scopus 로고
    • Modified homotopy perturbation method for solving system of linear Fredholm integral equations
    • M. Javidi Modified homotopy perturbation method for solving system of linear Fredholm integral equations Math. Comput. Modelling 50 2009 159 165
    • (2009) Math. Comput. Modelling , vol.50 , pp. 159-165
    • Javidi, M.1
  • 6
    • 9644267675 scopus 로고    scopus 로고
    • Numerical solution of linear fredholm integral equations system by rationalized haar functions method
    • DOI 10.1080/0020716031000148214
    • K. Maleknejad, and F. Mirzaee Numerical solution of linear Fredholm integral equations system by rationalized Haar functions method Int. J. Comput. Math. 80 2003 1397 1405 (Pubitemid 41710468)
    • (2003) International Journal of Computer Mathematics , vol.80 , Issue.11 , pp. 1397-1405
    • Maleknejad, K.1    Mirzaee, F.2
  • 7
    • 3242672559 scopus 로고    scopus 로고
    • Solving linear integro-differential equations system by using rationalized Haar functions method
    • K. Maleknejad, F. Mirzaee, and S. Abbasbandy Solving linear integro-differential equations system by using rationalized Haar functions method Appl. Math. Comput. 155 2004 317 328
    • (2004) Appl. Math. Comput. , vol.155 , pp. 317-328
    • Maleknejad, K.1    Mirzaee, F.2    Abbasbandy, S.3
  • 8
    • 52049098460 scopus 로고    scopus 로고
    • Solutions of integral and integro-differential equation systems by using differential transform method
    • A. Arikoglu, and I. Ozkol Solutions of integral and integro-differential equation systems by using differential transform method Comput. Math. Appl. 56 2008 2411 2417
    • (2008) Comput. Math. Appl. , vol.56 , pp. 2411-2417
    • Arikoglu, A.1    Ozkol, I.2
  • 9
    • 25644434152 scopus 로고    scopus 로고
    • Numerical solution of the system of Fredholm integro-differential equations by the Tau method
    • DOI 10.1016/j.amc.2004.09.026, PII S0096300304006186
    • J. Pour-Mahmoud, M.Y. Rahimi-Ardabili, and S. Shahmorad Numerical solution of the system of Fredholm integro-differential equations by the Tau method Appl. Math. Comput. 168 2005 465 478 (Pubitemid 41383673)
    • (2005) Applied Mathematics and Computation , vol.168 , Issue.1 , pp. 465-478
    • Pour-Mahmoud, J.1    Rahimi-Ardabili, M.Y.2    Shahmorad, S.3
  • 10
    • 44149091947 scopus 로고    scopus 로고
    • The variational iteration method: A highly promising method for solving the system of integro differential equations
    • J. Saberi-Nadjafi, and M. Tamamgar The variational iteration method: a highly promising method for solving the system of integro differential equations Comput. Math. Appl. 56 2008 346 351
    • (2008) Comput. Math. Appl. , vol.56 , pp. 346-351
    • Saberi-Nadjafi, J.1    Tamamgar, M.2
  • 11
    • 77952954172 scopus 로고    scopus 로고
    • Approximate solutions of linear Volterra integral equation systems with variable coefficients
    • 10.1016/j.apm.2010.02.034
    • H.H. Sorkun, and S. Yalinbas Approximate solutions of linear Volterra integral equation systems with variable coefficients Appl. Math. Modelling 34 2010 3451 3464 10.1016/j.apm.2010.02.034
    • (2010) Appl. Math. Modelling , vol.34 , pp. 3451-3464
    • Sorkun, H.H.1    Yalinbas, S.2
  • 12
    • 0037448167 scopus 로고    scopus 로고
    • Solution of a system of Volterra integral equations of the first kind by Adomian method
    • J. Biazar, E. Babolian, and R. Islam Solution of a system of Volterra integral equations of the first kind by Adomian method Appl. Math. Comput. 139 2003 249 258
    • (2003) Appl. Math. Comput. , vol.139 , pp. 249-258
    • Biazar, J.1    Babolian, E.2    Islam, R.3
  • 13
    • 7544230832 scopus 로고    scopus 로고
    • Solving linear integro-differential equation system by Galerkin methods with hybrid functions
    • K. Maleknejad, and M. Tavassoli Kajani Solving linear integro-differential equation system by Galerkin methods with hybrid functions Appl. Math. Comput. 159 2004 603 612
    • (2004) Appl. Math. Comput. , vol.159 , pp. 603-612
    • Maleknejad, K.1    Tavassoli Kajani, M.2
  • 14
    • 23844518698 scopus 로고    scopus 로고
    • Chebyshev polynomial solutions of systems of higher-order linear Fredholm-Volterra integro-differential equations
    • DOI 10.1016/j.jfranklin.2005.04.001, PII S0016003205000347, The Franklin Institute Awards
    • A. Akyz-Dacolu, and M. Sezer Chebyshev polynomial solutions of systems of higher-order linear FredholmVolterra integro-differential equations J. Franklin Inst. 342 2005 688 701 (Pubitemid 41162434)
    • (2005) Journal of the Franklin Institute , vol.342 , Issue.6 , pp. 688-701
    • Akyuz-Dascioglu, A.1    Sezer, M.2
  • 15
    • 33750071409 scopus 로고    scopus 로고
    • Taylor collocation method for solution of systems of high-order linear Fredholm-Volterra integro-differential equations
    • DOI 10.1080/00207160600988342, PII JJT5005140650X21
    • M. Glsu, and M. Sezer Taylor collocation method for solution of systems of high-order linear Fredholm Volterra integro-differential equations Int. J. Comput. Math. 83 2006 429 448 (Pubitemid 44581230)
    • (2006) International Journal of Computer Mathematics , vol.83 , Issue.4 , pp. 429-448
    • Gulsu, M.1    Sezer, M.2
  • 16
    • 34547775142 scopus 로고    scopus 로고
    • Modified method for determining an approximate solution of the Fredholm-Volterra integral equations by Taylor's expansion
    • DOI 10.1080/00207160600988524, PII 769837754
    • X.-F. Li, and M. Fang Modified method for determining an approximate solution of the FredholmVolterra integral equations by Taylor's expansion Int. J. Comput. Math. 83 2006 637 649 (Pubitemid 47226500)
    • (2006) International Journal of Computer Mathematics , vol.83 , Issue.8-9 , pp. 637-649
    • Li, X.-F.1    Fang, M.2
  • 17
    • 77952211610 scopus 로고    scopus 로고
    • Approximate solution of a class of linear integro-differential equations by Taylor expansion method
    • Y. Huang, and X.-F. Li Approximate solution of a class of linear integro-differential equations by Taylor expansion method Int. J. Comput. Math. 87 2010 1277 1288
    • (2010) Int. J. Comput. Math. , vol.87 , pp. 1277-1288
    • Huang, Y.1    Li, X.-F.2
  • 18
    • 27944508264 scopus 로고    scopus 로고
    • Taylor polynomial solutions of systems of linear differential equations with variable coefficients
    • DOI 10.1080/00207160512331323336
    • M. Sezer, A. Karamete, and M. Glsu Taylor polynomial solutions of systems of linear differential equations with variable coefficients Int. J. Comput. Math. 82 2005 755 764 (Pubitemid 41663451)
    • (2005) International Journal of Computer Mathematics , vol.82 , Issue.6 , pp. 755-764
    • Sezer, M.1    Karamete, A.2    Gulsu, M.3
  • 19
    • 0037774723 scopus 로고    scopus 로고
    • Chebyshev polynomial solutions of systems of high-order linear differential equations with variable coefficients
    • A. Akyz-Dacolu, and M. Sezer Chebyshev polynomial solutions of systems of high-order linear differential equations with variable coefficients Appl. Math. Comput. 144 2003 237 247
    • (2003) Appl. Math. Comput. , vol.144 , pp. 237-247
    • Akyz-Dacolu, A.1    Sezer, M.2
  • 20
    • 63149157208 scopus 로고    scopus 로고
    • Legendre polynomial solutions of highorder linear Fredholm integro-differential equations
    • S. Yalnba, M. Sezer, and H.H. Sorkun Legendre polynomial solutions of highorder linear Fredholm integro-differential equations Appl. Math. Comput. 210 2009 334 349
    • (2009) Appl. Math. Comput. , vol.210 , pp. 334-349
    • Yalnba, S.1    Sezer, M.2    Sorkun, H.H.3
  • 21
    • 55349117771 scopus 로고    scopus 로고
    • Polynomial solution of high-order linear Fredholm integro-differential equations with constant coefficients
    • N. Kurt, and M. Sezer Polynomial solution of high-order linear Fredholm integro-differential equations with constant coefficients J. Franklin Inst. 345 2008 839 850
    • (2008) J. Franklin Inst. , vol.345 , pp. 839-850
    • Kurt, N.1    Sezer, M.2
  • 22
    • 0008173703 scopus 로고
    • Taylor polynomial solution of Volterra integral equations
    • M. Sezer Taylor polynomial solution of Volterra integral equations Int. J. Math. Educ. Sci. Technol. 25 1994 625 633
    • (1994) Int. J. Math. Educ. Sci. Technol. , vol.25 , pp. 625-633
    • Sezer, M.1
  • 24
    • 84860129388 scopus 로고    scopus 로고
    • A Bessel collocation method for numerical solution of generalized pantograph equations
    • doi:10.1002/num.20660 in press
    • Yzba, N. ahin, M. Sezer, A Bessel collocation method for numerical solution of generalized pantograph equations, Numer. Methods Partial Differential Equations (2011), in press (doi:10.1002/num.20660).
    • (2011) Numer. Methods Partial Differential Equations
    • Yzba1    Ahin, N.2    Sezer, M.3
  • 25
    • 62749090990 scopus 로고    scopus 로고
    • He's homotopy perturbation method for solving system of Volterra integral equations of the second kind
    • J. Biazar, and H. Ghazvini He's homotopy perturbation method for solving system of Volterra integral equations of the second kind Chaos Solitons Fractals 39 2 2009 770 777
    • (2009) Chaos Solitons Fractals , vol.39 , Issue.2 , pp. 770-777
    • Biazar, J.1    Ghazvini, H.2
  • 26
    • 0043023487 scopus 로고    scopus 로고
    • Taylor polynomial solutions of highorder nonlinear VolterraFredholm integro-differential equation
    • K. Maleknejad, and Y. Mahmoudi Taylor polynomial solutions of highorder nonlinear VolterraFredholm integro-differential equation Appl. Math. Comput. 145 2003 641 653
    • (2003) Appl. Math. Comput. , vol.145 , pp. 641-653
    • Maleknejad, K.1    Mahmoudi, Y.2
  • 27
    • 34247548298 scopus 로고    scopus 로고
    • Numerical computational solution of the Volterra integral equations system of the second kind by using an expansion method
    • DOI 10.1016/j.amc.2006.09.012, PII S0096300306012513
    • M. Rabbani, K. Maleknejad, and N. Aghazadeh Numerical computational solution of the Volterra integral equations system of the second kind by using an expansion method Appl. Math. Comput. 187 2007 1143 1146 (Pubitemid 46656286)
    • (2007) Applied Mathematics and Computation , vol.187 , Issue.2 , pp. 1143-1146
    • Rabbani, M.1    Maleknejad, K.2    Aghazadeh, N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.