메뉴 건너뛰기




Volumn 106, Issue 494, 2011, Pages 626-639

Outlier detection using nonconvex penalized regression

Author keywords

M estimation; Robust regression; Sparsity; Thresholding

Indexed keywords


EID: 79960141467     PISSN: 01621459     EISSN: None     Source Type: Journal    
DOI: 10.1198/jasa.2011.tm10390     Document Type: Article
Times cited : (277)

References (42)
  • 1
    • 84857394773 scopus 로고    scopus 로고
    • Wavelet methods in statistics: Some recent developments and their applications
    • [628,629,638]
    • Antoniadis, A. (2007), "Wavelet Methods in Statistics: Some Recent Developments and Their Applications," Statistics Surveys, 1, 16-55. [628,629,638]
    • (2007) Statistics Surveys , vol.1 , pp. 16-55
    • Antoniadis, A.1
  • 4
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • [636]
    • Benjamini, Y., and Hochberg, Y. (1995), "Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing," Journal of the Royal Statistical Society, Ser. B, 57 (1), 289-300. [636]
    • (1995) Journal of the Royal Statistical Society, Ser. B , vol.57 , Issue.1 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 7
    • 50949108781 scopus 로고    scopus 로고
    • Extended Bayesian information criterion for model selection with large model space
    • [633]
    • Chen, J., and Chen, Z. (2008), "Extended Bayesian Information Criterion for Model Selection With Large Model Space," Biometrika, 95, 759-771. [633]
    • (2008) Biometrika , vol.95 , pp. 759-771
    • Chen, J.1    Chen, Z.2
  • 8
  • 9
    • 0041958932 scopus 로고
    • Ideal spatial adaptation via wavelet shrinkages
    • [627,633]
    • Donoho, D., and Johnstone, I. (1994), "Ideal Spatial Adaptation via Wavelet Shrinkages," Biometrika, 81, 425-455. [627,633]
    • (1994) Biometrika , vol.81 , pp. 425-455
    • Donoho, D.1    Johnstone, I.2
  • 11
    • 53849086824 scopus 로고    scopus 로고
    • Sure independence screening for ultrahigh dimensional feature space
    • [636]
    • Fan, J., and Lv, J. (2008), "Sure Independence Screening for Ultrahigh Dimensional Feature Space," Journal of the Royal Statistical Society, Ser. B, 70 (5), 849-911. [636]
    • (2008) Journal of the Royal Statistical Society, Ser. B , vol.70 , Issue.5 , pp. 849-911
    • Fan, J.1    Lv, J.2
  • 13
    • 0036282009 scopus 로고    scopus 로고
    • A class of robust and fully efficient regression estimators
    • [633]
    • Gervini, D., and Yohai, V. J. (2002), "A Class of Robust and Fully Efficient Regression Estimators," The Annals of Statistics, 30 (2), 583-616. [633]
    • (2002) The Annals of Statistics , vol.30 , Issue.2 , pp. 583-616
    • Gervini, D.1    Yohai, V.J.2
  • 14
    • 21344485226 scopus 로고
    • Procedures for the identification of multiple outliers in linear models
    • [627]
    • Hadi, A. S., and Simonoff, J. S. (1993), "Procedures for the Identification of Multiple Outliers in Linear Models," Journal of the American Statistical Association, 88 (424), 1264-1272. [627]
    • (1993) Journal of the American Statistical Association , vol.88 , Issue.424 , pp. 1264-1272
    • Hadi, A.S.1    Simonoff, J.S.2
  • 17
    • 0021482113 scopus 로고
    • Location of several outliers in multiple-regression data using elemental sets
    • [627]
    • Hawkins, D. M., Bradu, D., and Kass, G. V. (1984), "Location of Several Outliers in Multiple-Regression Data Using Elemental Sets," Technometrics, 26 (3), 197-208. [627]
    • (1984) Technometrics , vol.26 , Issue.3 , pp. 197-208
    • Hawkins, D.M.1    Bradu, D.2    Kass, G.V.3
  • 18
    • 0004262735 scopus 로고
    • New York: Wiley, [627,629,630,638]
    • Huber, P. J. (1981), Robust Statistics, New York: Wiley. [627,629,630,638]
    • (1981) Robust Statistics
    • Huber, P.J.1
  • 20
    • 34548356964 scopus 로고    scopus 로고
    • Robust variable selection using least angle regression and elemental set sampling
    • [626,628]
    • McCann, L., andWelsch, R. E. (2007), "Robust Variable Selection Using Least Angle Regression and Elemental Set Sampling," Computational Statistics & Data Analysis, 52 (1), 249-257. [626,628]
    • (2007) Computational Statistics & Data Analysis , vol.52 , Issue.1 , pp. 249-257
    • McCann, L.1    Andwelsch, R.E.2
  • 21
    • 77955342631 scopus 로고    scopus 로고
    • A diagnostic method for simultaneous feature selection and outlier identification in linear regression
    • [627]
    • Menjoge, R. S., and Welsch, R. E. (2010), "A Diagnostic Method for Simultaneous Feature Selection and Outlier Identification in Linear Regression," Computational Statistics & Data Analysis, 54, 3181-3193. [627]
    • (2010) Computational Statistics & Data Analysis , vol.54 , pp. 3181-3193
    • Menjoge, R.S.1    Welsch, R.E.2
  • 22
    • 77955405267 scopus 로고    scopus 로고
    • Outlier detection and least trimmed squares approximation using semi-definite programming
    • [627]
    • Nguyen, T., and Welsch, R. (2010), "Outlier Detection and Least Trimmed Squares Approximation Using Semi-Definite Programming," Computational Statistics & Data Analysis, 54 (12), 3212-3226. [627]
    • (2010) Computational Statistics & Data Analysis , vol.54 , Issue.12 , pp. 3212-3226
    • Nguyen, T.1    Welsch, R.2
  • 23
    • 0001045983 scopus 로고
    • The detection of influential subsets in linear regression by using an influence matrix
    • [627,633]
    • Peña, D., and Yohai, V. J. (1995), "The Detection of Influential Subsets in Linear Regression by Using an Influence Matrix," Journal of the Royal Statistical Society, Ser. B, 57 (1), 145-156. [627,633]
    • (1995) Journal of the Royal Statistical Society, Ser. B , vol.57 , Issue.1 , pp. 145-156
    • Peña, D.1    Yohai, V.J.2
  • 24
    • 0042295202 scopus 로고    scopus 로고
    • A fast procedure for outlier diagnostics in large regression problems
    • [627,631,633,637]
    • Peña, D., and Yohai, V. J. (1999), "A Fast Procedure for Outlier Diagnostics in Large Regression Problems," Journal of the American Statistical Association, 94 (446), 434-445. [627,631,633,637]
    • (1999) Journal of the American Statistical Association , vol.94 , Issue.446 , pp. 434-445
    • Peña, D.1    Yohai, V.J.2
  • 25
    • 35748932852 scopus 로고    scopus 로고
    • R Development Core Team, Vienna, Austria: R Foundation for Statistical Computing. Available at, [633]
    • R Development Core Team (2007), R: A Language and Environment for Statistical Computing, Vienna, Austria: R Foundation for Statistical Computing. Available at http://www.Rproject.org. ISBN 3-900051-07-0. [633]
    • (2007) R: A Language and Environment for Statistical Computing
  • 28
    • 23244450905 scopus 로고    scopus 로고
    • Computing LTS regression for large data sets
    • [637]
    • Rousseeuw, P., and Van Driessen, K. (2002), "Computing LTS Regression for Large Data Sets," Estadistica, 54, 163-190. [637]
    • (2002) Estadistica , vol.54 , pp. 163-190
    • Rousseeuw, P.1    van Driessen, K.2
  • 31
    • 0032486019 scopus 로고    scopus 로고
    • A clustering algorithm for identifying multiple outliers in linear regression
    • [627]
    • Serbert, D., Montgomery, D., and Rollier, D. (1998), "A Clustering Algorithm for Identifying Multiple Outliers in Linear Regression," Computational Statistics & Data Analysis, 27, 461-484. [627]
    • (1998) Computational Statistics & Data Analysis , vol.27 , pp. 461-484
    • Serbert, D.1    Montgomery, D.2    Rollier, D.3
  • 32
    • 79952701411 scopus 로고    scopus 로고
    • Thresholding-based iterative selection procedures for model selection and shrinkage
    • [629, 631,636,637]
    • She, Y. (2009), "Thresholding-Based Iterative Selection Procedures for Model Selection and Shrinkage," Electronic Journal of Statistics, 3, 384-415. [629, 631,636,637]
    • (2009) Electronic Journal of Statistics , vol.3 , pp. 384-415
    • She, Y.1
  • 33
    • 84947402121 scopus 로고
    • Rectangular confidence regions for the means of multivariate normal distribution
    • [628]
    • Šidák, Z. (1967), "Rectangular Confidence Regions for the Means of Multivariate Normal Distribution," Journal of the American Statistical Association, 62, 626-633. [628]
    • (1967) Journal of the American Statistical Association , vol.62 , pp. 626-633
    • Šidák, Z.1
  • 34
    • 84950421188 scopus 로고
    • On one-step GM estimates and stability of inferences in linear regression
    • [627]
    • Simpson, D. G., Ruppert, D., and Carroll, R. J. (1992), "On One-Step GM Estimates and Stability of Inferences in Linear Regression," Journal of the American Statistical Association, 87 (418), 439-450. [627]
    • (1992) Journal of the American Statistical Association , vol.87 , Issue.418 , pp. 439-450
    • Simpson, D.G.1    Ruppert, D.2    Carroll, R.J.3
  • 35
    • 84946656799 scopus 로고
    • The analysis of disturbances in regression analysis
    • [631]
    • Theil, H. (1965), "The Analysis of Disturbances in Regression Analysis," Journal of the American Statistical Association, 60 (312), 1067-1079. [631]
    • (1965) Journal of the American Statistical Association , vol.60 , Issue.312 , pp. 1067-1079
    • Theil, H.1
  • 38
    • 0035962712 scopus 로고    scopus 로고
    • A Comparative analysis of multiple outlier detection procedures in the linear regression model
    • [626]
    • Wisnowski, J. W., Montgomery, D. C., and Simpson, J. R. (2001), "A Comparative Analysis of Multiple Outlier Detection Procedures in the Linear Regression Model," Computational Statistics & Data Analysis, 36 (3), 351-382. [626]
    • (2001) Computational Statistics & Data Analysis , vol.36 , Issue.3 , pp. 351-382
    • Wisnowski, J.W.1    Montgomery, D.C.2    Simpson, J.R.3
  • 39
    • 0001742386 scopus 로고
    • High breakdown-point and high efficiency robust estimates for regression
    • [627,633]
    • Yohai, V. J. (1987), "High Breakdown-Point and High Efficiency Robust Estimates for Regression," The Annals of Statistics, 15 (2), 642-656. [627,633]
    • (1987) The Annals of Statistics , vol.15 , Issue.2 , pp. 642-656
    • Yohai, V.J.1
  • 40
    • 50949096321 scopus 로고    scopus 로고
    • The sparsity and bias of the lasso selection in high-dimensional linear regression
    • [637]
    • Zhang, C.-H., and Huang, J. (2008), "The Sparsity and Bias of the Lasso Selection in High-Dimensional Linear Regression," The Annals of Statistics, 36, 1567-1594. [637]
    • (2008) The Annals of Statistics , vol.36 , pp. 1567-1594
    • Zhang, C.-H.1    Huang, J.2
  • 41
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of lasso
    • [637]
    • Zhao, P., and Yu, B. (2006), "On Model Selection Consistency of Lasso," Journal of Machine Learning Research, 7, 2541-2563. [637]
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2541-2563
    • Zhao, P.1    Yu, B.2
  • 42
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • [636]
    • Zou, H., and Hastie, T. (2005), "Regularization and Variable Selection via the Elastic Net," Journal of the Royal Statistical Society, Ser. B, 67 (2), 301-320. [636]
    • (2005) Journal of the Royal Statistical Society, Ser. B , vol.67 , Issue.2 , pp. 301-320
    • Zou, H.1    Hastie, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.