-
2
-
-
85015106657
-
DNA in a material world
-
DOI 10.1038/nature01406
-
Seeman, N. C. DNA in a Material World Nature 2003, 421, 427-431 (Pubitemid 36157949)
-
(2003)
Nature
, vol.421
, Issue.6921
, pp. 427-431
-
-
Seeman, N.C.1
-
3
-
-
0033575066
-
Designed Two-Dimensional DNA Holliday Junction Arrays Visualized by Atomic Force Microscopy
-
Mao, C.; Sun, W.; Seeman, N. C. Designed Two-Dimensional DNA Holliday Junction Arrays Visualized by Atomic Force Microscopy J. Am. Chem. Soc. 1999, 121, 5437-5443
-
(1999)
J. Am. Chem. Soc.
, vol.121
, pp. 5437-5443
-
-
Mao, C.1
Sun, W.2
Seeman, N.C.3
-
4
-
-
18144400399
-
Programmable DMA self-assemblies for nanoscale organization of ligands and proteins
-
DOI 10.1021/nl050175c
-
Park, S. H.; Yin, P.; Liu, Y.; Reif, J. H.; LaBean, T. H.; Yan, H. Programmable DNA Self-Assemblies for Nanoscale Organization of Ligands and Proteins Nano Lett. 2005, 5, 729-733 (Pubitemid 40609749)
-
(2005)
Nano Letters
, vol.5
, Issue.4
, pp. 729-733
-
-
Park, S.H.1
Yin, P.2
Liu, Y.3
Reif, J.H.4
Labean, T.H.5
Yan, H.6
-
5
-
-
0032490948
-
Design and self-assembly of two-dimensional DNA crystals
-
DOI 10.1038/28998
-
Winfree, E.; Liu, F.; Wenzler, L. A.; Seeman, N. C. Design and Self-Assembly of Two-Dimensional DNA Crystals Nature 1998, 394, 539-544 (Pubitemid 28366820)
-
(1998)
Nature
, vol.394
, Issue.6693
, pp. 539-544
-
-
Winfree, E.1
Liu, F.2
Wenzler, L.A.3
Seeman, N.C.4
-
6
-
-
0141534348
-
DNA-templated self-assembly of protein arrays and highly conductive nanowires
-
DOI 10.1126/science.1089389
-
Yan, H.; Park, S. H.; Finkelstein, G.; Reif, J. H.; LaBean, T. H. DNA-Templated Self-Assembly of Protein Arrays and Highly Conductive Nanowires Science 2003, 301, 1882-1884 (Pubitemid 37221388)
-
(2003)
Science
, vol.301
, Issue.5641
, pp. 1882-1884
-
-
Yan, H.1
Park, S.H.2
Finkelstein, G.3
Reif, J.H.4
LaBean, T.H.5
-
7
-
-
1342325559
-
A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron
-
DOI 10.1038/nature02307
-
Shih, W. M.; Quispe, J. D.; Joyce, G. F. A 1.7-Kilobase Single-Stranded DNA That Folds Into a Nanoscale Octahedron Nature 2004, 427, 618-621 (Pubitemid 38248477)
-
(2004)
Nature
, vol.427
, Issue.6975
, pp. 618-621
-
-
Shih, W.M.1
Quispe, J.D.2
Joyce, G.F.3
-
8
-
-
28844463033
-
Chemistry: Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication
-
DOI 10.1126/science.1120367
-
Goodman, R. P.; Schaap, I. A. T.; Tardin, C. F.; Erben, C. M.; Berry, R. M.; Schmidt, C. F.; Turberfield, A. J. Rapid Chiral Assembly of Rigid DNA Building Blocks for Molecular Nanofabrication Science 2005, 310, 1661-1665 (Pubitemid 41780784)
-
(2005)
Science
, vol.310
, Issue.5754
, pp. 1661-1665
-
-
Goodman, R.P.1
Schaap, I.A.T.2
Tardin, C.F.3
Erben, C.M.4
Berry, R.M.5
Schmidt, C.F.6
Turberfield, A.J.7
-
9
-
-
49449103698
-
Programming DNA Tube Circumferences
-
Yin, P.; Hariadi, R. F.; Sahu, S.; Choi, H. M.; Park, S. H.; Labean, T. H.; Reif, J. H. Programming DNA Tube Circumferences Science 2008, 321, 824-826
-
(2008)
Science
, vol.321
, pp. 824-826
-
-
Yin, P.1
Hariadi, R.F.2
Sahu, S.3
Choi, H.M.4
Park, S.H.5
Labean, T.H.6
Reif, J.H.7
-
10
-
-
53149118265
-
Toward Reliable Algorithmic Self-Assembly of DNA Tiles: A Fixed-Width Cellular Automaton Pattern
-
Fujibayashi, K.; Hariadi, R.; Park, S. H.; Winfree, E.; Murata, S. Toward Reliable Algorithmic Self-Assembly of DNA Tiles: A Fixed-Width Cellular Automaton Pattern Nano Lett. 2007, 8, 1791-1797
-
(2007)
Nano Lett.
, vol.8
, pp. 1791-1797
-
-
Fujibayashi, K.1
Hariadi, R.2
Park, S.H.3
Winfree, E.4
Murata, S.5
-
11
-
-
14044251445
-
Algorithmic Self-Assembly of DNA Sierpinski Triangles
-
Rothemund, P. W. K.; Papadakis, N.; Winfree, E. Algorithmic Self-Assembly of DNA Sierpinski Triangles PLoS Biol. 2004, 2, 2041-2053
-
(2004)
PLoS Biol.
, vol.2
, pp. 2041-2053
-
-
Rothemund, P.W.K.1
Papadakis, N.2
Winfree, E.3
-
12
-
-
0034727072
-
Logical Computation Using Algorithmic Self-Assembly of DNA Triple-Crossover Molecules
-
Mao, C.; LaBean, T. H.; Relf, J. H.; Seeman, N. C. Logical Computation Using Algorithmic Self-Assembly of DNA Triple-Crossover Molecules Nature 2000, 407, 493-496
-
(2000)
Nature
, vol.407
, pp. 493-496
-
-
Mao, C.1
Labean, T.H.2
Relf, J.H.3
Seeman, N.C.4
-
13
-
-
8844263882
-
Solving traveling salesman problems with DNA molecules encoding numerical values
-
DOI 10.1016/j.biosystems.2004.06.005, PII S0303264704001157
-
Lee, J. Y.; Shin, S.-Y.; Park, T. H.; Zhang, B.-T. Solving Traveling Salesman Problems with DNA Molecules Encoding Numerical Values Biosystems 2004, 78, 39-47 (Pubitemid 39536131)
-
(2004)
BioSystems
, vol.78
, Issue.1-3
, pp. 39-47
-
-
Lee, J.Y.1
Shin, S.-Y.2
Park, T.H.3
Zhang, B.-T.4
-
14
-
-
0027255843
-
DNA double-crossover molecules
-
Fu, T.-J.; Seeman, N. C. DNA Double-Crossover Molecules Biochemistry 1993, 32, 3211-3220 (Pubitemid 23126886)
-
(1993)
Biochemistry
, vol.32
, Issue.13
, pp. 3211-3220
-
-
Fu, T.-J.1
Seeman, N.C.2
-
15
-
-
30644470156
-
Two computational primitives for algorithmic self-assembly: Copying and counting
-
DOI 10.1021/nl052038l
-
Barish, R. D.; Rothemund, P. W. K.; Winfree, E. Two Computational Primitives for Algorithmic Self-Assembly: Copying and Counting Nano Lett. 2005, 5, 2586-2592 (Pubitemid 43088917)
-
(2005)
Nano Letters
, vol.5
, Issue.12
, pp. 2586-2592
-
-
Barish, R.D.1
Rothemund, P.W.K.2
Winfree, E.3
-
16
-
-
79959787617
-
-
One can calculate the degree of noncomplementarity of sticky end base pairs. In the case of STLs (i. e., STL(X,O) and STL(X,X)), the number of different possible sticky end binding sets (e. g., c1?+c1?, c2+c3?, c3?+c4) is 10. Out of these, 5 binding sets (c1?+c4, c2+c2, c2+c4, c3?+c3?, and c4+c4) have 5 out of 5 noncomplementary sticky end base pairs, 2 binding sets (c1?+c2 and c1?+c4) have 4 out of 5 noncomplementary sticky end base pairs, and 3 binding sets (c1?+c1?, c2+c3?, and c3?+c4) have 3 out of 5 noncomplementary sticky end base pairs (Figures 13S and 19S). In the same manner, for DTL(X,O) and DTL(X,X), there are 36 possible sticky end binding sets. Besides the 2 common sets, which have 5 complementary sticky end base pairs, 12 binding sets have 5 out of 5 noncomplementary sticky end base pairs, another 12 binding sets have 4 out of 5 noncomplementary sticky end base pairs, and 10 binding sets have 3 out of 5 noncomplementary sticky end base pairs (Figures 29S and 31S).
-
One can calculate the degree of noncomplementarity of sticky end base pairs. In the case of STLs (i. e., STL(X,O) and STL(X,X)), the number of different possible sticky end binding sets (e. g., c1?+c1?, c2+c3?, c3?+c4) is 10. Out of these, 5 binding sets (c1?+c4, c2+c2, c2+c4, c3?+c3?, and c4+c4) have 5 out of 5 noncomplementary sticky end base pairs, 2 binding sets (c1?+c2 and c1?+c4) have 4 out of 5 noncomplementary sticky end base pairs, and 3 binding sets (c1?+c1?, c2+c3?, and c3?+c4) have 3 out of 5 noncomplementary sticky end base pairs (Figures 13S and 19S). In the same manner, for DTL(X,O) and DTL(X,X), there are 36 possible sticky end binding sets. Besides the 2 common sets, which have 5 complementary sticky end base pairs, 12 binding sets have 5 out of 5 noncomplementary sticky end base pairs, another 12 binding sets have 4 out of 5 noncomplementary sticky end base pairs, and 10 binding sets have 3 out of 5 noncomplementary sticky end base pairs (Figures 29S and 31S).
-
-
-
-
17
-
-
24144490824
-
Compact error-resilient computational DNA tiling assemblies
-
DNA Computing - 10th International Workshop on DNA Computing, DNA 10
-
Reif, J. H.; Sahu, S.; Yin, P. Compact Error-Resilient Computational DNA Tiling Assemblies. DNA Computing 10 LNCS 2005, 3384, 293-307 (Pubitemid 41231405)
-
(2005)
Lecture Notes in Computer Science
, vol.3384
, pp. 293-307
-
-
Reif, J.H.1
Sahu, S.2
Yin, P.3
-
18
-
-
24144492138
-
A method of error suppression for self-assembling DNA tiles
-
DNA Computing - 10th International Workshop on DNA Computing, DNA 10
-
Fujibayashi, K.; Murata, S. A Method of Error Suppression for Self-Assembling DNA Tiles. DNA Computing 10 LNCS 2005, 3384, 113-127 (Pubitemid 41231389)
-
(2005)
Lecture Notes in Computer Science
, vol.3384
, pp. 113-127
-
-
Fujibayashi, K.1
Murata, S.2
-
19
-
-
35048869195
-
Proofreading Tile Sets: Error Correction for Algorithmic Self-Assembly. DNA Computing 9
-
Winfree, E.; Bekbolatov, R. Proofreading Tile Sets: Error Correction for Algorithmic Self-Assembly. DNA Computing 9 LNCS 2004, 2943, 126-144
-
(2004)
LNCS
, vol.2943
, pp. 126-144
-
-
Winfree, E.1
Bekbolatov, R.2
-
20
-
-
79959796866
-
Fabrication of P3HT/PCBM Bulk Heterojunction Solar Cells with DNA Complex Layer
-
Kolachure, V.; Jin, H.-C. Fabrication of P3HT/PCBM Bulk Heterojunction Solar Cells with DNA Complex Layer Conf. Rec. IEEE Photovoltaic Spec. Conf. 2008, 1-5
-
(2008)
Conf. Rec. IEEE Photovoltaic Spec. Conf.
, pp. 1-5
-
-
Kolachure, V.1
Jin, H.-C.2
-
21
-
-
33750742291
-
Performance of an Electro-Optic Waveguide Modulator Fabricated Using a Deoxyribonucleic-Acid-Based Biopolymer
-
Heckman, E. M.; Yaney, P. P.; Grote, J. G.; Hopkins, F. K. Performance of an Electro-Optic Waveguide Modulator Fabricated Using a Deoxyribonucleic-Acid- Based Biopolymer Appl. Phys. Lett. 2006, 89, 181116-1-181116-3
-
(2006)
Appl. Phys. Lett.
, vol.89
, pp. 1811161-1811163
-
-
Heckman, E.M.1
Yaney, P.P.2
Grote, J.G.3
Hopkins, F.K.4
|