-
1
-
-
41649110034
-
Characterization of differentiated quiescent and non-quiescent cells in yeast stationary-phase cultures
-
Aragon, A.D. et al. (2008) Characterization of differentiated quiescent and non-quiescent cells in yeast stationary-phase cultures. Mol. Biol. Cell, 19, 1271-1280.
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 1271-1280
-
-
Aragon, A.D.1
-
2
-
-
19344374050
-
Similarities and differences in genome-wide expression data of six organisms
-
Bergmann, S. et al. (2004) Similarities and differences in genome-wide expression data of six organisms. PLoS Biol., 2, E9.
-
(2004)
PLoS Biol.
, vol.2
-
-
Bergmann, S.1
-
3
-
-
0017751656
-
Efficiency of pseudolikelihood estimation for simple gaussian fields
-
Besag,J. (1977) Efficiency of pseudolikelihood estimation for simple gaussian fields. Biometrika, 64, 616-618.
-
(1977)
Biometrika
, vol.64
, pp. 616-618
-
-
Besag, J.1
-
4
-
-
59149103774
-
Coordinated concentration changes of transcripts and metabolites in Saccharomyces cerevisiae
-
Bradley, P.H. et al. (2009) Coordinated concentration changes of transcripts and metabolites in Saccharomyces cerevisiae. PLoS Comput. Biol., 5, e1000270.
-
(2009)
PLoS Comput. Biol.
, vol.5
-
-
Bradley, P.H.1
-
5
-
-
35348891430
-
Network-based classification of breast cancer metastasis
-
Chuang, H.-Y. et al. (2007) Network-based classification of breast cancer metastasis. Mol. Syst. Biol., 3.
-
(2007)
Mol. Syst. Biol.
, pp. 3
-
-
Chuang, H.-Y.1
-
6
-
-
79953317636
-
The proteomics of quiescent and non-quiescent cell differentiation in yeast stationary-phase cultures
-
Davidson, G.S. et al. (2011) The proteomics of quiescent and non-quiescent cell differentiation in yeast stationary-phase cultures. Mol. Biol. Cell, 22, 988-998.
-
(2011)
Mol. Biol. Cell
, vol.22
, pp. 988-998
-
-
Davidson, G.S.1
-
7
-
-
0033707946
-
Using bayesian networks to analyze expression data
-
Friedman, N. et al. (2000) Using bayesian networks to analyze expression data. J. Comput. Biol., 7, 601-620.
-
(2000)
J. Comput. Biol.
, vol.7
, pp. 601-620
-
-
Friedman, N.1
-
8
-
-
2942584864
-
'sleeping beauty': Quiescence in Saccharomyces cerevisiae
-
Gray, J.V. et al. (2004) 'sleeping beauty': Quiescence in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev., 68, 187-206.
-
(2004)
Microbiol. Mol. Biol. Rev.
, vol.68
, pp. 187-206
-
-
Gray, J.V.1
-
9
-
-
4544352942
-
Transcriptional regulatory code of a eukaryotic genome
-
Harbison, C.T. et al. (2004) Transcriptional regulatory code of a eukaryotic genome. Nature, 431, 99-104.
-
(2004)
Nature
, vol.431
, pp. 99-104
-
-
Harbison, C.T.1
-
11
-
-
0002370418
-
A Tutorial on Learning with Bayesian Networks
-
Jordan,M. (ed.) MIT Press, Cambridge, MA
-
Heckerman,D. (1999) A Tutorial on Learning with Bayesian Networks. In Jordan,M. (ed.) Learning in Graphical Models, MIT Press, Cambridge, MA.
-
(1999)
Learning in Graphical Models
-
-
Heckerman, D.1
-
12
-
-
62649085538
-
The DNA-encoded nucleosome organization of a eukaryotic genome
-
Kaplan, N. et al. (2008) The DNA-encoded nucleosome organization of a eukaryotic genome. Nature, 458, 362-366.
-
(2008)
Nature
, vol.458
, pp. 362-366
-
-
Kaplan, N.1
-
13
-
-
33745797057
-
Unraveling condition specific gene transcriptional regulatory networks in saccharomyces cerevisiae
-
Kim, H. et al. (2006) Unraveling condition specific gene transcriptional regulatory networks in saccharomyces cerevisiae. BMC Bioinformatics.
-
(2006)
BMC Bioinformatics
-
-
Kim, H.1
-
14
-
-
0004047518
-
-
Oxford Statistical Science Series. Oxford University Press, New York, USA
-
Lauritzen, S.L. (1996) Graphical Models. Oxford Statistical Science Series. Oxford University Press, New York, USA.
-
(1996)
Graphical Models
-
-
Lauritzen, S.L.1
-
15
-
-
9444282110
-
Genomic analysis of stationary-phase and exit in Saccharomyces cerevisiae: gene expression and identification of novel essential genes
-
Martinez,M.J. et al. (2004) Genomic analysis of stationary-phase and exit in Saccharomyces cerevisiae: gene expression and identification of novel essential genes. Mol. Biol. Cell, 15, 5295-5305.
-
(2004)
Mol. Biol. Cell
, vol.15
, pp. 5295-5305
-
-
Martinez, M.J.1
-
16
-
-
2942694772
-
Artificial gene networks for objective comparison of analysis algorithms
-
Mendes, P. et al. (2003) Artificial gene networks for objective comparison of analysis algorithms. Bioinformatics, 19, 122-129.
-
(2003)
Bioinformatics
, vol.19
, pp. 122-129
-
-
Mendes, P.1
-
17
-
-
34548749776
-
Context-sensitive data integration and prediction of biological networks
-
Myers, C.L. and Troyanskaya,O.G. (2007) Context-sensitive data integration and prediction of biological networks. Bioinformatics, 23, 2322-2330.
-
(2007)
Bioinformatics
, vol.23
, pp. 2322-2330
-
-
Myers, C.L.1
Troyanskaya, O.G.2
-
18
-
-
18144442687
-
Inferring subnetworks from perturbed expression profiles
-
Pe'er, D. et al. (2001) Inferring subnetworks from perturbed expression profiles. Bioinformatics, 17 (Suppl. 1), S215-S224.
-
(2001)
Bioinformatics
, vol.17
, Issue.SUPPL. 1
-
-
Pe'er, D.1
-
19
-
-
33646338193
-
Minreg: a scalable algorithm for learning parsimonious regulatory networks in yeast and mammals
-
Pe'er,D. et al. (2006) Minreg: a scalable algorithm for learning parsimonious regulatory networks in yeast and mammals. J. Mach. Learn. Res., 7, 167-189.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 167-189
-
-
Pe'er, D.1
-
20
-
-
34848903220
-
From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data
-
Rhein,R.O. and Strimmer,K. (2007) From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data. BMC Syst. Biol., 1, 37.
-
(2007)
BMC Syst. Biol.
, vol.1
, pp. 37
-
-
Rhein, R.O.1
Strimmer, K.2
-
21
-
-
33846675685
-
Similarities and differences of gene expression in yeast stress conditions
-
Rokhlenko, O. et al. (2007) Similarities and differences of gene expression in yeast stress conditions. Bioinformatics, 23, e184-e190.
-
(2007)
Bioinformatics
, vol.23
-
-
Rokhlenko, O.1
-
22
-
-
61949323210
-
Inference of functional networks of condition-specific response- a case study of quiescence in yeast
-
Roy, S. et al. (2009) Inference of functional networks of condition-specific response- a case study of quiescence in yeast. In Proceedings of Pacific Symposium on Biocomputing. pp. 51-62.
-
(2009)
Proceedings of Pacific Symposium on Biocomputing
, pp. 51-62
-
-
Roy, S.1
-
23
-
-
79959405068
-
-
Correct citation of Roy et al. 2009 is: Roy et al
-
Correct citation of Roy et al. 2009 is: Roy et al. (2009).
-
(2009)
-
-
-
24
-
-
33644873438
-
Regulondb (version 5.0): Escherichia coli k-12 transcriptional regulatory network, operon organization, and growth conditions
-
Salgado,H. et al. (2006) Regulondb (version 5.0): Escherichia coli k-12 transcriptional regulatory network, operon organization, and growth conditions. Nucleic Acids Res., 34, D394.
-
(2006)
Nucleic Acids Res.
, vol.34
-
-
Salgado, H.1
-
25
-
-
41949107946
-
Mmg: a probabilistic tool to identify submodules of metabolic pathways
-
Sanguinetti, G. et al. (2008) Mmg: a probabilistic tool to identify submodules of metabolic pathways. Bioinformatics, 24, 1078-1084.
-
(2008)
Bioinformatics
, vol.24
, pp. 1078-1084
-
-
Sanguinetti, G.1
-
26
-
-
15944364151
-
An empirical bayes approach to inferring large-scale gene association networks
-
Schäfer,J. and Strimmer,K. (2005) An empirical bayes approach to inferring large-scale gene association networks. Bioinformatics, 21, 754-764.
-
(2005)
Bioinformatics
, vol.21
, pp. 754-764
-
-
Schäfer, J.1
Strimmer, K.2
-
27
-
-
0037941585
-
Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data
-
Segal, E. et al. (2003) Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat. Genet., 34, 166-176.
-
(2003)
Nat. Genet.
, vol.34
, pp. 166-176
-
-
Segal, E.1
-
28
-
-
21844455527
-
Learning module networks
-
Segal, E. et al. (2005) Learning module networks. J. Mach. Learn. Res., 6, 557-588.
-
(2005)
J. Mach. Learn. Res.
, vol.6
, pp. 557-588
-
-
Segal, E.1
-
29
-
-
0141993704
-
Agene-coexpression network for global discovery of conserved genetic modules
-
Stuart, J.M. et al. (2003)Agene-coexpression network for global discovery of conserved genetic modules. Science, 302, 249-255.
-
(2003)
Science
, vol.302
, pp. 249-255
-
-
Stuart, J.M.1
-
30
-
-
33745656175
-
Characterizing disease states from topological properties of transcriptional regulatory networks
-
Tuck, D.P. et al. (2006) Characterizing disease states from topological properties of transcriptional regulatory networks. BMC Bioinformatics, 7.
-
(2006)
BMC Bioinformatics
, pp. 7
-
-
Tuck, D.P.1
-
31
-
-
33749825955
-
Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical gaussian models and Bayesian networks
-
Werhli, A.V. et al. (2006) Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical gaussian models and Bayesian networks. Bioinformatics, 22, 2523-2531.
-
(2006)
Bioinformatics
, vol.22
, pp. 2523-2531
-
-
Werhli, A.V.1
-
32
-
-
12344259602
-
Advances to Bayesian network inference for generating causal networks from observational biological data
-
Yu, J. et al. (2004) Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics, 20, 3594-3603.
-
(2004)
Bioinformatics
, vol.20
, pp. 3594-3603
-
-
Yu, J.1
-
33
-
-
79959464522
-
Differential dependency network analysis to identify conditionspecific topological changes in biological networks
-
Zhang, B. et al. (2008) Differential dependency network analysis to identify conditionspecific topological changes in biological networks. Bioinformatics. 1838.
-
(2008)
Bioinformatics
, pp. 1838
-
-
Zhang, B.1
|