메뉴 건너뛰기




Volumn , Issue , 2010, Pages

Ensemble classifier design by parallel distributed implementation of genetic fuzzy rule selection for large data sets

Author keywords

[No Author keywords available]

Indexed keywords

APPLICATION AREA; BASE CLASSIFIERS; COMPUTATION LOADS; COMPUTATIONAL EXPERIMENT; DISTRIBUTED IMPLEMENTATION; ENSEMBLE CLASSIFIERS; FITNESS FUNCTIONS; GENERALIZATION ABILITY; GENETIC-FUZZY; GENETICS BASED MACHINE LEARNING; KNOWLEDGE EXTRACTION; LARGE DATASETS; OVERFITTING; RESEARCH ISSUES; ROTATION FREQUENCIES; RULE SELECTION; SPEED-UPS; SUB-POPULATIONS; TRAINING DATA;

EID: 79959464048     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CEC.2010.5586393     Document Type: Conference Paper
Times cited : (6)

References (27)
  • 2
    • 50149096917 scopus 로고    scopus 로고
    • Genetic fuzzy systems: Taxonomy, current research trends and prospects
    • F. Herrera, "Genetic fuzzy systems: Taxonomy, current research trends and prospects," Evolutionary Intelligence, vol. 1, pp. 27-46, 2008.
    • (2008) Evolutionary Intelligence , vol.1 , pp. 27-46
    • Herrera, F.1
  • 8
    • 17444379003 scopus 로고    scopus 로고
    • Stratification for scaling up evolutionary prototype selection
    • J. R. Cano, F. Herrera, and M. Lozano, "Stratification for scaling up evolutionary prototype selection," Pattern Recognition Letters, vol. 26, no. 7, pp. 953-963, 2005.
    • (2005) Pattern Recognition Letters , vol.26 , Issue.7 , pp. 953-963
    • Cano, J.R.1    Herrera, F.2    Lozano, M.3
  • 9
    • 33644641221 scopus 로고    scopus 로고
    • On the combination of evolutionary algorithms and stratified strategies for training set selection in data mining
    • J. R. Cano, F. Herrera, and M. Lozano, "On the combination of evolutionary algorithms and stratified strategies for training set selection in data mining," Applied Soft Computing, vol. 6, no. 3, pp. 323-332, 2006.
    • (2006) Applied Soft Computing , vol.6 , Issue.3 , pp. 323-332
    • Cano, J.R.1    Herrera, F.2    Lozano, M.3
  • 10
    • 58049215502 scopus 로고    scopus 로고
    • Parallel distributed genetic fuzzy rule selection
    • Y. Nojima, H. Ishibuchi, and I. Kuwajima, "Parallel distributed genetic fuzzy rule selection," Soft Computing, vol. 13, no. 5, pp. 511-519, 2009.
    • (2009) Soft Computing , vol.13 , Issue.5 , pp. 511-519
    • Nojima, Y.1    Ishibuchi, H.2    Kuwajima, I.3
  • 13
    • 0029359001 scopus 로고
    • Selecting fuzzy if-then rules for classification problems using genetic algorithms
    • H. Ishibuchi, K. Nozaki, N. Yamamoto, and H. Tanaka, "Selecting fuzzy if-then rules for classification problems using genetic algorithms," IEEE Trans. on Fuzzy Systems, vol. 3, no. 3, pp. 260-270, 1995.
    • (1995) IEEE Trans. on Fuzzy Systems , vol.3 , Issue.3 , pp. 260-270
    • Ishibuchi, H.1    Nozaki, K.2    Yamamoto, N.3    Tanaka, H.4
  • 14
  • 15
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, "Bagging predictors," Machine Learning, vol. 24, pp. 123-140, 1996.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 17
    • 77952772388 scopus 로고    scopus 로고
    • Comparing two genetic overproduce-and-choose Strategies for fuzzy rule-based multiclassification systems generated by bagging and mutual information-based feature selection
    • O. Cordon and A. Quirin, "Comparing two genetic overproduce-and- choose Strategies for fuzzy rule-based multiclassification systems generated by bagging and mutual information-based feature selection," International Journal of Hybrid and Intelligent Systems, vol. 7, no. 1, pp. 45-64, 2010.
    • (2010) International Journal of Hybrid and Intelligent Systems , vol.7 , Issue.1 , pp. 45-64
    • Cordon, O.1    Quirin, A.2
  • 19
    • 0032634129 scopus 로고    scopus 로고
    • Pasting small votes for classification in large database and on-line
    • L. Breiman, "Pasting small votes for classification in large database and on-line," Machine Learning, vol. 36, pp. 85-103, 1999.
    • (1999) Machine Learning , vol.36 , pp. 85-103
    • Breiman, L.1
  • 22
    • 3543091439 scopus 로고    scopus 로고
    • Comparison of heuristic criteria for fuzzy rule selection in classification problems
    • H. Ishibuchi and T. Yamamoto, "Comparison of heuristic criteria for fuzzy rule selection in classification problems," Fuzzy Optimization and Decision Making, vol.3, no.2, pp.119-139, 2004.
    • (2004) Fuzzy Optimization and Decision Making , vol.3 , Issue.2 , pp. 119-139
    • Ishibuchi, H.1    Yamamoto, T.2
  • 23
    • 0035426682 scopus 로고    scopus 로고
    • Three-objective genetics-based machine learning for linguistic rule extraction
    • H. Ishibuchi, T. Nakashima, and T. Murata, "Three-objective genetics-based machine learning for linguistic rule extraction," Information Science, vol.136, no.1-4, pp.109-133, 2001.
    • (2001) Information Science , vol.136 , Issue.1-4 , pp. 109-133
    • Ishibuchi, H.1    Nakashima, T.2    Murata, T.3
  • 24
    • 70349814661 scopus 로고    scopus 로고
    • A survey of distributed classification based ensemble data mining method
    • D. Mokeddem and H. Belbachir, "A survey of distributed classification based ensemble data mining method," Journal of Applied Sciences, vol. 9, no. 20, pp. 3739-3745, 2009.
    • (2009) Journal of Applied Sciences , vol.9 , Issue.20 , pp. 3739-3745
    • Mokeddem, D.1    Belbachir, H.2
  • 26
    • 33751186914 scopus 로고    scopus 로고
    • Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning
    • H. Ishibuchi and Y. Nojima, "Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning," International Journal of Approximate Reasoning, vol. 44, no. 1, pp. 4-31, 2007.
    • (2007) International Journal of Approximate Reasoning , vol.44 , Issue.1 , pp. 4-31
    • Ishibuchi, H.1    Nojima, Y.2
  • 27
    • 71249138212 scopus 로고    scopus 로고
    • Search ability of evolutionary multiobjective optimization algorithms for multiobjective fuzzy genetics-based machine learning
    • H. Ishibuchi, Y. Nakashima, and Y. Nojima, "Search ability of evolutionary multiobjective optimization algorithms for multiobjective fuzzy genetics-based machine learning," Proc. of 2009 IEEE International Conference on Fuzzy Systems, pp. 1724-1729, 2009.
    • (2009) Proc. of 2009 IEEE International Conference on Fuzzy Systems , pp. 1724-1729
    • Ishibuchi, H.1    Nakashima, Y.2    Nojima, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.