-
1
-
-
33845404914
-
Existence and regularity for a minimum problem with free boundary
-
Zbl 0449.35105 MR 0618549
-
[AC] ALT, H. W., & CAFFARELLI, L. A. Existence and regularity for a minimum problem with free boundary. J. Reine Angew. Math. 325 (1981), 105-144. Zbl 0449.35105 MR 0618549
-
(1981)
J. Reine Angew. Math.
, vol.325
, pp. 105-144
-
-
Alt, H.W.1
Caffarelli, L.A.2
-
2
-
-
0000166670
-
On the Stokes conjecture for the wave of extreme form
-
Zbl 0495.76021 MR 0666110
-
[AFT] AMICK, C. J., FRAENKEL, L. E., & TOLAND, J. F. On the Stokes conjecture for the wave of extreme form. Acta Math. 148 (1982), 193-214. Zbl 0495.76021 MR 0666110
-
(1982)
Acta Math.
, vol.148
, pp. 193-214
-
-
Amick, C.J.1
Fraenkel, L.E.2
Toland, J.F.3
-
3
-
-
73949122200
-
Flat free boundaries regularity in two-phase problems for a class of fully nonlinear elliptic operators with variable coefficients
-
Zbl 1179.35349 MR 2511639
-
[AF] ARGIOLAS, R., & FERRARI, F. Flat free boundaries regularity in two-phase problems for a class of fully nonlinear elliptic operators with variable coefficients. Interfaces Free Bound. 11 (2009), 177-199. Zbl 1179.35349 MR 2511639
-
(2009)
Interfaces Free Bound.
, vol.11
, pp. 177-199
-
-
Argiolas, R.1
Ferrari, F.2
-
5
-
-
84990604298
-
A Harnack inequality approach to the regularity of free boundaries. Part II: Flat free boundaries are Lipschitz
-
Zbl 0676.35086 MR 0973745
-
[C2] CAFFARELLI, L. A. A Harnack inequality approach to the regularity of free boundaries. Part II: Flat free boundaries are Lipschitz. Comm. Pure Appl. Math. 42 (1989), 55-78. Zbl 0676.35086 MR 0973745
-
(1989)
Comm. Pure Appl. Math.
, vol.42
, pp. 55-78
-
-
Caffarelli, L.A.1
-
6
-
-
0002449458
-
Fully nonlinear elliptic equations
-
Amer. Math. Soc., Providence, RI, Zbl 0834.35002 MR 1351007
-
[CC] CAFFARELLI, L. A., & CABRÉ, X. Fully Nonlinear Elliptic Equations. Amer. Math. Soc. Colloq. Publ. 43, Amer. Math. Soc., Providence, RI (1995). Zbl 0834.35002 MR 1351007
-
(1995)
Amer. Math. Soc. Colloq. Publ.
, pp. 43
-
-
Caffarelli, L.A.1
Cabré, X.2
-
8
-
-
1242319077
-
Exact steady periodic water waves with vorticity
-
Zbl 1038.76011 MR 2027299
-
[CS] CONSTANTIN, A., & STRAUSS, W. Exact steady periodic water waves with vorticity. Comm. Pure Appl. Math. 57 (2004), 481-527. Zbl 1038.76011 MR 2027299
-
(2004)
Comm. Pure Appl. Math.
, vol.57
, pp. 481-527
-
-
Constantin, A.1
Strauss, W.2
-
9
-
-
0040485132
-
Regularity of Lipschitz free boundaries in two-phase problems for fully nonlinear elliptic equations
-
[F1] FELDMAN, M. Regularity of Lipschitz free boundaries in two-phase problems for fully nonlinear elliptic equations. Indiana Univ. Math. J. 50 (2001), 1171-1200. Zbl 1037.35104 MR 1871352 (Pubitemid 33583280)
-
(2001)
Indiana University Mathematics Journal
, vol.50
, Issue.3
, pp. 1171-1200
-
-
Feldman, M.1
-
10
-
-
0040357917
-
Regularity for nonisotropic two-phase problems with Lipshitz free boundaries
-
Zbl 0940.35047 MR 1608061
-
[F2] FELDMAN, M. Regularity for nonisotropic two-phase problems with Lipshitz free boundaries. Differential Integral Equations 10 (1997), 1171-1179. Zbl 0940.35047 MR 1608061
-
(1997)
Differential Integral Equations
, vol.10
, pp. 1171-1179
-
-
Feldman, M.1
-
11
-
-
33745675721
-
1,γ
-
DOI 10.1353/ajm.2006.0023
-
1,γ;. Amer. J. Math. 128 (2006), 541-571. Zbl 1142.35108 MR 2230916 (Pubitemid 43972481)
-
(2006)
American Journal of Mathematics
, vol.128
, Issue.3
, pp. 541-571
-
-
Ferrari, F.1
-
12
-
-
34250191454
-
Regularity of the free boundary in two-phase problems for elliptic operators
-
Zbl 1189.35385 MR 2348032
-
[FS1] FERRARI, F., & SALSA, S. Regularity of the free boundary in two-phase problems for elliptic operators. Adv. Math. 214 (2007), 288-322. Zbl 1189.35385 MR 2348032
-
(2007)
Adv. Math.
, vol.214
, pp. 288-322
-
-
Ferrari, F.1
Salsa, S.2
-
13
-
-
33947650647
-
Subsolutions of elliptic operators in divergence form and application to two-phase free boundary problems
-
art. ID 57049, Zbl 1188.35070 MR 2291927
-
[FS2] FERRARI, F., & SALSA, S. Subsolutions of elliptic operators in divergence form and application to two-phase free boundary problems. Bound. Value Probl. 2007, art. ID 57049, 21 pp. Zbl 1188.35070 MR 2291927
-
(2007)
Bound. Value Probl.
, pp. 21
-
-
Ferrari, F.1
Salsa, S.2
-
14
-
-
84980186248
-
Analyticity at the boundary of solutions of nonlinear second-order parabolic equations
-
Zbl 0391.35045 MR 0460897
-
[KN] KINDERLEHRER, D., & NIRENBERG, L. Analyticity at the boundary of solutions of nonlinear second-order parabolic equations. Comm. Pure Appl. Math. 31 (1978), 283-338. Zbl 0391.35045 MR 0460897
-
(1978)
Comm. Pure Appl. Math.
, vol.31
, pp. 283-338
-
-
Kinderlehrer, D.1
Nirenberg, L.2
-
15
-
-
0013463858
-
Proof of the Stokes conjecture in the theory of surface waves
-
(in Russian); English transl.: Stud. Appl. Math. 3 2002 217-244. Zbl 1152.76339 MR 1883094
-
[P] PLOTNIKOV, P. I. Proof of the Stokes conjecture in the theory of surface waves. Dinamika Splosh. Sredy 57 (1982), 41-76 (in Russian); English transl.: Stud. Appl. Math. 3 (2002), 217-244. Zbl 1152.76339 MR 1883094
-
(1982)
Dinamika Splosh. Sredy
, vol.57
, pp. 41-76
-
-
Plotnikov, P.I.1
-
16
-
-
34247145801
-
Small perturbation solutions for elliptic equations
-
Zbl pre05174527 MR 2334822
-
[S] SAVIN, O. Small perturbation solutions for elliptic equations. Comm. Partial Differential Equations 32 (2007), 557-578. Zbl pre05174527 MR 2334822
-
(2007)
Comm. Partial Differential Equations
, vol.32
, pp. 557-578
-
-
Savin, O.1
-
17
-
-
63449141066
-
On the existence of extreme waves and the Stokes conjecture with vorticity
-
Zbl 1162.76011 MR 2514735
-
[V] VARVARUCA, E. On the existence of extreme waves and the Stokes conjecture with vorticity. J. Differential Equations 246 (2009), 4043-4076. Zbl 1162.76011 MR 2514735
-
(2009)
J. Differential Equations
, vol.246
, pp. 4043-4076
-
-
Varvaruca, E.1
-
19
-
-
0034406030
-
1,α
-
Zbl 1040.35158 MR 1752439
-
1,α. Comm. Pure Appl. Math. 53 (2000), 799-810. Zbl 1040.35158 MR 1752439
-
(2000)
Comm. Pure Appl. Math.
, vol.53
, pp. 799-810
-
-
Wang, P.Y.1
-
20
-
-
0036381920
-
Regularity of free boundaries of two-phase problems for fully nonlinear elliptic equations of second order. II. Flat free boundaries are Lipschitz
-
Zbl 1125.35424 MR 1924475
-
[W2] WANG, P. Y. Regularity of free boundaries of two-phase problems for fully nonlinear elliptic equations of second order. II. Flat free boundaries are Lipschitz. Comm. Partial Differential Equations 27 (2002), 1497-1514. Zbl 1125.35424 MR 1924475
-
(2002)
Comm. Partial Differential Equations
, vol.27
, pp. 1497-1514
-
-
Wang, P.Y.1
|