-
2
-
-
84990604298
-
A Harnack inequality approach to the regularity of free boundaries. II. Flat free boundaries are Lipschitz
-
Zbl 0676.35086 MR 0973745
-
CAFFARELLI, L. A Harnack inequality approach to the regularity of free boundaries. II. Flat free boundaries are Lipschitz. Comm. Pure Appl. Math. 42 (1989), 55-78. Zbl 0676.35086 MR 0973745
-
(1989)
Comm. Pure Appl. Math.
, vol.42
, pp. 55-78
-
-
Caffarelli, L.1
-
3
-
-
84881031051
-
-
Amer. Math. Soc. Colloq. Publ. 43, Amer. Math. Soc., Providence. Zbl 0834.35002 MR 1351007
-
CAFFARELLI, L., & CABRÉ, X. Fully Nonlinear Elliptic Equations. Amer. Math. Soc. Colloq. Publ. 43, Amer. Math. Soc., Providence, RI (1995). Zbl 0834.35002 MR 1351007
-
(1995)
Fully Nonlinear Elliptic Equations
, vol.RI
-
-
Caffarelli, L.1
Cabré, X.2
-
4
-
-
0040059911
-
On viscosity solutions of fully nonlinear equations with measurable ingredients
-
CAFFARELLI, L., CRANDALL, M. G., KOCAN, M., & ŚWIȨCH, A. On viscosity solutions of fully nonlinear equations with measurable ingredients. Comm. Pure Appl. Math. 49 (1996), 365-397. Zbl 0854.35032 MR 1376656 (Pubitemid 126350146)
-
(1996)
Communications on Pure and Applied Mathematics
, vol.49
, Issue.4
, pp. 365-397
-
-
Caffarelli, L.A.1
Kocan, M.J.2
Crandall, M.G.3
Swiech, A.J.4
-
5
-
-
73949093508
-
-
Grad. Stud. Math. 68, Amer. Math. Soc., Providence, Zbl 1083.35001 MR 2145284
-
CAFFARELLI, L., & SALSA, S. A Geometric Approach to Free Boundary Problems. Grad. Stud. Math. 68, Amer. Math. Soc., Providence, RI (2005). Zbl 1083.35001 MR 2145284
-
(2005)
Geometric Approach to Free Boundary Problems
, vol.RI
-
-
Caffarelli, L.1
Salsa, S.A.2
-
7
-
-
0000024412
-
2,n a priori estimates for solutions to fully nonlinear equations
-
Zbl 0792.35020 MR 1237053
-
2,n a priori estimates for solutions to fully nonlinear equations. Indiana Univ. Math. J. 42 (1993), 413-423. Zbl 0792.35020 MR 1237053
-
(1993)
Indiana Univ. Math. J.
, vol.42
, pp. 413-423
-
-
Escauriaza, L.1
-
8
-
-
0000662906
-
Fatou theorems for some nonlinear elliptic equations
-
Zbl 0703.35058 MR 1028741
-
FABES, E., GAROFALO, N., MARIN-MALAVE, S., & SALSA, S. Fatou theorems for some nonlinear elliptic equations. Rev. Mat. Iberoamer. 4 (1988). 227-251. Zbl 0703.35058 MR 1028741
-
(1988)
Rev. Mat. Iberoamer.
, vol.4
, pp. 227-251
-
-
Fabes, E.1
Garofalo, N.2
Marin-Malave, S.3
Salsa, S.4
-
9
-
-
0040357917
-
Regularity for nonisotropic two-phase problems with Lipschitz free boundaries
-
Zbl 0940.35047 MR 1608061
-
FELDMAN, M. Regularity for nonisotropic two-phase problems with Lipschitz free boundaries. Differential Integral Equations 10 (1997), 1171-1179. Zbl 0940.35047 MR 1608061
-
(1997)
Differential Integral Equations
, vol.10
, pp. 1171-1179
-
-
Feldman, M.1
-
10
-
-
0040485132
-
Regularity of Lipschitz free boundaries in two-phase problems for fully nonlinear elliptic equations
-
Zbl 1037.35104 MR 1871352
-
FELDMAN, M. Regularity of Lipschitz free boundaries in two-phase problems for fully nonlinear elliptic equations. Indiana Univ. Math. J. 50 (2001), 1171-1200. Zbl 1037.35104 MR 1871352
-
(2001)
Indiana Univ. Math. J.
, vol.50
, pp. 1171-1200
-
-
Feldman, M.1
-
11
-
-
33745675721
-
1,γ
-
Zbl 1142.35108 MR 2230916
-
1,γAmer. J. Math. 128 (2006), 541-571. Zbl 1142.35108 MR 2230916
-
(2006)
Amer. J. Math.
, vol.128
, pp. 541-571
-
-
Ferrari, F.1
-
12
-
-
33947650647
-
Subsolutions of elliptic operators in divergence form and application to two-phase free boundary problems
-
art. ID 57049, Zbl pre05237143 MR 2291927
-
FERRARI, F., & SALSA, S. Subsolutions of elliptic operators in divergence form and application to two-phase free boundary problems. Bound. Value Probl. 2007, art. ID 57049, 21 pp. Zbl pre05237143 MR 2291927
-
Bound. Value Probl.
, vol.2007
-
-
Ferrari, F.1
Salsa, S.2
-
13
-
-
34250191454
-
Regularity of the free boundary in two-phase problems for linear elliptic operators
-
Zbl pre05180273 MR 2348032
-
FERRARI, F., & SALSA, S. Regularity of the free boundary in two-phase problems for linear elliptic operators. Adv. Math. 214 (2007), 288-322. Zbl pre05180273 MR 2348032
-
(2007)
Adv. Math.
, vol.214
, pp. 288-322
-
-
Ferrari, F.1
Salsa, S.2
-
14
-
-
0003282543
-
1,p -interior estimates for solutions of fully nonlinear, uniformly elliptic equations
-
Zbl 1023.35509 MR 1606359
-
1,p-interior estimates for solutions of fully nonlinear, uniformly elliptic equations. Adv. Differential Equations 2 (1997), 1005-1027. Zbl 1023.35509 MR 1606359
-
(1997)
Adv. Differential Equations
, vol.2
, pp. 1005-1027
-
-
Świech, A.1
-
15
-
-
0034406030
-
1,α
-
Zbl 1040.35158 MR 1752439
-
1,α Comm. Pure Appl. Math. 53 (2000), 799-810. Zbl 1040.35158 MR 1752439
-
(2000)
Comm. Pure Appl. Math.
, vol.53
, pp. 799-810
-
-
Wang, P.Y.1
-
16
-
-
0036381920
-
Regularity of free boundaries of two-phase problems for fully nonlinear elliptic equations of second order. II. Flat free boundaries are Lipschitz
-
Zbl 1125.35424 MR 1924475
-
WANG, P. Y. Regularity of free boundaries of two-phase problems for fully nonlinear elliptic equations of second order. II. Flat free boundaries are Lipschitz. Comm. Partial Differential Equations 27 (2002), 1497-1514. Zbl 1125.35424 MR 1924475
-
(2002)
Comm. Partial Differential Equations
, vol.27
, pp. 1497-1514
-
-
Wang, P.Y.1
|