-
1
-
-
0040117095
-
Phase transition problems of parabolic type: Flat free boundaries are smooth
-
Athanasopoulos I., Caffarelli L., and Salsa S. Phase transition problems of parabolic type: Flat free boundaries are smooth. Comm. Pure Appl. Math. 51 1 (1998) 77-112
-
(1998)
Comm. Pure Appl. Math.
, vol.51
, Issue.1
, pp. 77-112
-
-
Athanasopoulos, I.1
Caffarelli, L.2
Salsa, S.3
-
2
-
-
84990604298
-
A Harnack inequality approach to the regularity of free boundaries. II. Flat free boundaries are Lipschitz
-
Caffarelli L. A Harnack inequality approach to the regularity of free boundaries. II. Flat free boundaries are Lipschitz. Comm. Pure Appl. Math. 42 1 (1989) 55-78
-
(1989)
Comm. Pure Appl. Math.
, vol.42
, Issue.1
, pp. 55-78
-
-
Caffarelli, L.1
-
3
-
-
0000556907
-
A Harnack inequality approach to the regularity of free boundaries. III. Existence theory, compactness, and dependence on X
-
Caffarelli L.A. A Harnack inequality approach to the regularity of free boundaries. III. Existence theory, compactness, and dependence on X. Ann. Sc. Norm. Sup. Pisa Cl. Sci. (4) 15 4 (1988) 583-602
-
(1988)
Ann. Sc. Norm. Sup. Pisa Cl. Sci. (4)
, vol.15
, Issue.4
, pp. 583-602
-
-
Caffarelli, L.A.1
-
4
-
-
0002449458
-
Fully Nonlinear Elliptic Equations
-
Amer. Math. Soc., Providence, RI vi+104 pp
-
Caffarelli L., and Cabré X. Fully Nonlinear Elliptic Equations. Amer. Math. Soc. Colloq. Publ. vol. 43 (1995), Amer. Math. Soc., Providence, RI vi+104 pp
-
(1995)
Amer. Math. Soc. Colloq. Publ.
, vol.43
-
-
Caffarelli, L.1
Cabré, X.2
-
5
-
-
33947704957
-
A geometric approach to free boundary problems
-
Amer. Math. Soc., Providence, RI x+270 pp
-
Caffarelli L., and Salsa S. A geometric approach to free boundary problems. Grad. Stud. Math. vol. 68 (2005), Amer. Math. Soc., Providence, RI x+270 pp
-
(2005)
Grad. Stud. Math.
, vol.68
-
-
Caffarelli, L.1
Salsa, S.2
-
6
-
-
0040059911
-
On viscosity solutions of fully nonlinear equations with measurable ingredients
-
Caffarelli L., Crandall M.G., Kocan M., and Świȩch A. On viscosity solutions of fully nonlinear equations with measurable ingredients. Comm. Pure Appl. Math. 49 4 (1996) 365-397
-
(1996)
Comm. Pure Appl. Math.
, vol.49
, Issue.4
, pp. 365-397
-
-
Caffarelli, L.1
Crandall, M.G.2
Kocan, M.3
Świȩch, A.4
-
8
-
-
0000662906
-
Fatou theorems for some nonlinear elliptic equations
-
Fabes E., Garofalo N., Marin-Malave S., and Salsa S. Fatou theorems for some nonlinear elliptic equations. Rev. Mat. Iberoamericana 4 2 (1988) 227-251
-
(1988)
Rev. Mat. Iberoamericana
, vol.4
, Issue.2
, pp. 227-251
-
-
Fabes, E.1
Garofalo, N.2
Marin-Malave, S.3
Salsa, S.4
-
9
-
-
0040485132
-
Regularity of Lipschitz free boundaries in two-phase problems for fully nonlinear elliptic equations
-
Feldman M. Regularity of Lipschitz free boundaries in two-phase problems for fully nonlinear elliptic equations. Indiana Univ. Math. J. 50 3 (2001) 1171-1200
-
(2001)
Indiana Univ. Math. J.
, vol.50
, Issue.3
, pp. 1171-1200
-
-
Feldman, M.1
-
11
-
-
0039545937
-
Barriers on cones for uniformly elliptic operators
-
Miller K. Barriers on cones for uniformly elliptic operators. Ann. Mat. Pura Appl. (4) 76 (1967) 93-105
-
(1967)
Ann. Mat. Pura Appl. (4)
, vol.76
, pp. 93-105
-
-
Miller, K.1
-
12
-
-
0003282543
-
1, p-interior estimates for solutions of fully nonlinear, uniformly elliptic equations
-
1, p-interior estimates for solutions of fully nonlinear, uniformly elliptic equations. Adv. Differential Equations 2 6 (1997) 1005-1027
-
(1997)
Adv. Differential Equations
, vol.2
, Issue.6
, pp. 1005-1027
-
-
Świȩch, A.1
-
13
-
-
34250156490
-
-
E. Teixeira, A variational treatment for elliptic equation of the flame propagation type: Regularity of the free boundary, preprint, 2005
-
-
-
-
14
-
-
0036381920
-
Regularity of free boundaries of two-phase problems for fully nonlinear elliptic equations of second order. II. Flat free boundaries are Lipschitz
-
Wang P.Y. Regularity of free boundaries of two-phase problems for fully nonlinear elliptic equations of second order. II. Flat free boundaries are Lipschitz. Comm. Partial Differential Equations 27(7-8) 7 (2002) 1497-1514
-
(2002)
Comm. Partial Differential Equations
, vol.27 7-8
, Issue.7
, pp. 1497-1514
-
-
Wang, P.Y.1
|