메뉴 건너뛰기




Volumn 67, Issue 2, 2011, Pages 546-558

Missing Exposure Data in Stereotype Regression Model: Application to Matched Case-Control Study with Disease Subclassification

Author keywords

Conditional likelihood; Nonignorable missingness; Proportional odds; Stages of cancer; Vector generalized linear model

Indexed keywords

BAYESIAN NETWORKS; DIAGNOSIS; DISEASE CONTROL; REGRESSION ANALYSIS;

EID: 79959340396     PISSN: 0006341X     EISSN: 15410420     Source Type: Journal    
DOI: 10.1111/j.1541-0420.2010.01453.x     Document Type: Article
Times cited : (13)

References (42)
  • 1
    • 0003535936 scopus 로고    scopus 로고
    • 2nd edition. New York John Wiley and Sons.
    • Agresti, A. (2002). Categorical Data Analysis, 2nd edition. New York John Wiley and Sons.
    • (2002) Categorical Data Analysis
    • Agresti, A.1
  • 3
    • 70449379275 scopus 로고    scopus 로고
    • Bayesian inference for the stereotype regression model: Application to a case-control study of prostate cancer
    • 28, 3134-3157.
    • Ahn, J., Mukherjee, B., Banerjee, M., and Cooney, K. A. (2009). Bayesian inference for the stereotype regression model: Application to a case-control study of prostate cancer. Statistics in Medicine, 28, 3134-3157.
    • (2009) Statistics in Medicine
    • Ahn, J.1    Mukherjee, B.2    Banerjee, M.3    Cooney, K.A.4
  • 4
    • 0003809054 scopus 로고    scopus 로고
    • American Joint Committee on Cancer., 6th edition, New York Springer.
    • American Joint Committee on Cancer (2002). AJCC Cancer Staging Manual, 6th edition, 113-124. New York Springer.
    • (2002) AJCC Cancer Staging Manual , pp. 113-124
  • 7
  • 8
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences (with discussion)
    • Gelman, A. and Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences (with discussion). Statistical Science 7, 457-472.
    • (1992) Statistical Science , vol.7 , pp. 457-472
    • Gelman, A.1    Rubin, D.B.2
  • 10
    • 0000324169 scopus 로고
    • Adaptive rejection sampling for Gibbs sampling
    • Gilks, W. R. and Wild, P. (1992). Adaptive rejection sampling for Gibbs sampling. Applied Statistics 41, 337-348.
    • (1992) Applied Statistics , vol.41 , pp. 337-348
    • Gilks, W.R.1    Wild, P.2
  • 11
    • 0038312668 scopus 로고
    • Adaptive rejection Metropolis sampling
    • Gilks, W. R., Best, N. G., and Tan, K. K. C. (1995). Adaptive rejection Metropolis sampling. Applied Statistics 44, 455-472.
    • (1995) Applied Statistics , vol.44 , pp. 455-472
    • Gilks, W.R.1    Best, N.G.2    Tan, K.K.C.3
  • 12
    • 0001648516 scopus 로고
    • Iteratively reweighted least squares for maximum likelihood estimation and some robust and resistant alternative (with discussion)
    • Green, P. J. (1984). Iteratively reweighted least squares for maximum likelihood estimation and some robust and resistant alternative (with discussion). Journal of the Royal Statistical Society, Series B 46, 149-192.
    • (1984) Journal of the Royal Statistical Society, Series B , vol.46 , pp. 149-192
    • Green, P.J.1
  • 13
    • 0028129341 scopus 로고
    • Alternative models for ordinal logistic regression
    • Greenland, S. (1994). Alternative models for ordinal logistic regression. Statistics in Medicine 13, 1665-1677.
    • (1994) Statistics in Medicine , vol.13 , pp. 1665-1677
    • Greenland, S.1
  • 14
    • 0006206585 scopus 로고
    • A comparison of regression models for the analysis of ordered categorical data
    • Holtbrügge, W. and Schumacher, M. (1991). A comparison of regression models for the analysis of ordered categorical data. Applied Statistics 40, 249-259.
    • (1991) Applied Statistics , vol.40 , pp. 249-259
    • Holtbrügge, W.1    Schumacher, M.2
  • 15
    • 32544461637 scopus 로고    scopus 로고
    • Modelling physicians' recommendations for optimal medical care by random effects stereotype regression
    • G. Verbeke, G. Molenberghs, M. Aerts, and S. Fieuws (eds), Leuven Katholieke Universiteit Leuven.
    • Kuss, O. (2003). Modelling physicians' recommendations for optimal medical care by random effects stereotype regression. Proceedings of the 18th Workshop on Statistical Modelling, G. Verbeke, G. Molenberghs, M. Aerts, and S. Fieuws (eds), 245-249. Leuven Katholieke Universiteit Leuven.
    • (2003) Proceedings of the 18th Workshop on Statistical Modelling , pp. 245-249
    • Kuss, O.1
  • 16
    • 32544455347 scopus 로고    scopus 로고
    • On the estimation of the stereotype regression model
    • Kuss, O. (2006). On the estimation of the stereotype regression model. Computational Statistics and Data Analysis 50, 1877-1890.
    • (2006) Computational Statistics and Data Analysis , vol.50 , pp. 1877-1890
    • Kuss, O.1
  • 17
    • 0036186772 scopus 로고    scopus 로고
    • A review of ordinal regression models applied on health-related quality of life assessments
    • MRC CFAS Co-operative.
    • Lall, R., Campbell, M. J., Walters, S. J., Morgan, K., and MRC CFAS Co-operative. (2002). A review of ordinal regression models applied on health-related quality of life assessments. Statistical Methods in Medical Research 11, 49-67.
    • (2002) Statistical Methods in Medical Research , vol.11 , pp. 49-67
    • Lall, R.1    Campbell, M.J.2    Walters, S.J.3    Morgan, K.4
  • 19
    • 0001044972 scopus 로고
    • Finding the observed information matrix when using the EM algorithm
    • Louis, T. A. (1982). Finding the observed information matrix when using the EM algorithm. Journal of the Royal Statistical Society, Series B 44, 226-233.
    • (1982) Journal of the Royal Statistical Society, Series B , vol.44 , pp. 226-233
    • Louis, T.A.1
  • 20
    • 17844363488 scopus 로고    scopus 로고
    • Prediction of ordinal outcomes when the association between predictors and outcome differs between outcome levels
    • Lunt, M. (2004). Prediction of ordinal outcomes when the association between predictors and outcome differs between outcome levels. Statistics in Medicine 24, 1357-1369.
    • (2004) Statistics in Medicine , vol.24 , pp. 1357-1369
    • Lunt, M.1
  • 21
    • 0000251971 scopus 로고
    • Maximum likelihood estimation via the ECM algorithm: A general framework
    • Meng, X. L. and Rubin, D. B. (1993). Maximum likelihood estimation via the ECM algorithm: A general framework. Biometrika 80, 267-278.
    • (1993) Biometrika , vol.80 , pp. 267-278
    • Meng, X.L.1    Rubin, D.B.2
  • 22
    • 57449098273 scopus 로고    scopus 로고
    • A characterization of bias for fitting multivariate generalized linear models under choice-based sampling
    • Mukherjee, B. and Liu, I. (2009). A characterization of bias for fitting multivariate generalized linear models under choice-based sampling. Journal of Multivariate Analysis 100, 459-472.
    • (2009) Journal of Multivariate Analysis , vol.100 , pp. 459-472
    • Mukherjee, B.1    Liu, I.2
  • 23
    • 34447292353 scopus 로고    scopus 로고
    • Analysis of matched case-control data with ordinal disease states: Possible choices and comparisons
    • Mukherjee, B., Liu, I., and Sinha, S. (2007). Analysis of matched case-control data with ordinal disease states: Possible choices and comparisons. Statistics in Medicine 26, 3240-3257.
    • (2007) Statistics in Medicine , vol.26 , pp. 3240-3257
    • Mukherjee, B.1    Liu, I.2    Sinha, S.3
  • 24
    • 59849113280 scopus 로고    scopus 로고
    • On elimination of nuisance parameters in a stratified proportional odds model by amalgamating conditional likelihoods
    • Mukherjee, B., Ahn, J., Liu, I., Rathouz, P. J., and Sanchez, B. N. (2008). On elimination of nuisance parameters in a stratified proportional odds model by amalgamating conditional likelihoods. Statistics in Medicine 27, 4950-4971.
    • (2008) Statistics in Medicine , vol.27 , pp. 4950-4971
    • Mukherjee, B.1    Ahn, J.2    Liu, I.3    Rathouz, P.J.4    Sanchez, B.N.5
  • 25
    • 85153196177 scopus 로고    scopus 로고
    • National Cancer Institute Physical activity and cancer. Available at:, accessed 1 June 2009.
    • National Cancer Institute. (2009). Physical activity and cancer. Available at:, accessed 1 June 2009.
    • (2009)
  • 26
    • 2942670902 scopus 로고    scopus 로고
    • Nonignorable missingness in matched case-control data analyses
    • Paik, M. C. (2004). Nonignorable missingness in matched case-control data analyses. Biometrics 60, 306-314.
    • (2004) Biometrics , vol.60 , pp. 306-314
    • Paik, M.C.1
  • 28
    • 85153186006 scopus 로고    scopus 로고
    • Package CODA, Version 0.13-4, Output analysis and diagnostics for MCMC. Avaiable at: accessed 1 May 2009.
    • Plummer, M., Best, N., Cowles, K., and Vines, K. (2009). Package CODA, Version 0.13-4, Output analysis and diagnostics for MCMC. Avaiable at: accessed 1 May 2009.
    • (2009)
    • Plummer, M.1    Best, N.2    Cowles, K.3    Vines, K.4
  • 30
    • 0042171745 scopus 로고    scopus 로고
    • Likelihood methods for missing covariate data in highly stratified studies
    • Rathouz, P. J. (2003). Likelihood methods for missing covariate data in highly stratified studies. Journal of the Royal Statistical Society, Series B 65, 711-723.
    • (2003) Journal of the Royal Statistical Society, Series B , vol.65 , pp. 711-723
    • Rathouz, P.J.1
  • 31
    • 0041740155 scopus 로고    scopus 로고
    • Semiparametric inference in matched case-control studies with missing covariate data
    • Rathouz, P. J., Satten, G. A., and Carroll, R. J. (2002). Semiparametric inference in matched case-control studies with missing covariate data. Biometrika 89, 905-916.
    • (2002) Biometrika , vol.89 , pp. 905-916
    • Rathouz, P.J.1    Satten, G.A.2    Carroll, R.J.3
  • 32
    • 2942628278 scopus 로고    scopus 로고
    • Equivalence between conditional and mixture approaches to the Rasch model and matched case-control studies, with applications
    • Rice, K. M. (2004). Equivalence between conditional and mixture approaches to the Rasch model and matched case-control studies, with applications. Journal of the American Statistical Association 99, 510-522.
    • (2004) Journal of the American Statistical Association , vol.99 , pp. 510-522
    • Rice, K.M.1
  • 33
    • 0033948380 scopus 로고    scopus 로고
    • Conditional and unconditional categorical regression models with missing covariates
    • Satten, G. and Carroll, R. J. (2000). Conditional and unconditional categorical regression models with missing covariates. Biometrics 56, 384-388.
    • (2000) Biometrics , vol.56 , pp. 384-388
    • Satten, G.1    Carroll, R.J.2
  • 34
    • 21144479637 scopus 로고
    • Inferences about exposure-disease associations using probability of exposure information
    • Satten, G. A. and Kupper, L. (1993). Inferences about exposure-disease associations using probability of exposure information. Journal of the American Statistical Association 88, 200-208.
    • (1993) Journal of the American Statistical Association , vol.88 , pp. 200-208
    • Satten, G.A.1    Kupper, L.2
  • 35
    • 0002650537 scopus 로고    scopus 로고
    • Fitting regression models to case-control data by maximum likelihood
    • Scott, A. J. and Wild, C. J. (1997). Fitting regression models to case-control data by maximum likelihood. Biometrika 84, 57-71.
    • (1997) Biometrika , vol.84 , pp. 57-71
    • Scott, A.J.1    Wild, C.J.2
  • 36
    • 39849104922 scopus 로고    scopus 로고
    • Analysis of matched case-control data in presence of nonignorable missing exposure
    • Sinha, S. and Maiti, T. (2008). Analysis of matched case-control data in presence of nonignorable missing exposure. Biometrics 64, 106-114.
    • (2008) Biometrics , vol.64 , pp. 106-114
    • Sinha, S.1    Maiti, T.2
  • 37
    • 1642280191 scopus 로고    scopus 로고
    • Bayesian semiparametric modeling for matched case-control studies with multiple disease states
    • Sinha, S., Mukherjee, B., and Ghosh, M. (2004). Bayesian semiparametric modeling for matched case-control studies with multiple disease states. Biometrics 60, 41-49.
    • (2004) Biometrics , vol.60 , pp. 41-49
    • Sinha, S.1    Mukherjee, B.2    Ghosh, M.3
  • 39
    • 54349123572 scopus 로고    scopus 로고
    • Modelling association among bivariate exposures in matched case-control studies
    • Sinha, S., Mukherjee, B., and Ghosh, M. (2007). Modelling association among bivariate exposures in matched case-control studies. Sankhya 69, 379-404.
    • (2007) Sankhya , vol.69 , pp. 379-404
    • Sinha, S.1    Mukherjee, B.2    Ghosh, M.3
  • 40
    • 84950758368 scopus 로고
    • The calculation of posterior distributions by data augmentation (with discussion)
    • Tanner, M. A. and Wong, W. H. (1987). The calculation of posterior distributions by data augmentation (with discussion). Journal of the American Statistical Association 82, 528-550.
    • (1987) Journal of the American Statistical Association , vol.82 , pp. 528-550
    • Tanner, M.A.1    Wong, W.H.2
  • 41
    • 77949335209 scopus 로고    scopus 로고
    • The VGAM package for categorical data analysis
    • Yee, T. W. (2010). The VGAM package for categorical data analysis. Journal of Statistical Software, 32, 1-34.
    • (2010) Journal of Statistical Software , vol.32 , pp. 1-34
    • Yee, T.W.1
  • 42
    • 84993729357 scopus 로고    scopus 로고
    • Reduced-rank vector generalized linear models
    • Yee, T. W. and Hastie, T. J. (2003). Reduced-rank vector generalized linear models. Statistical Modeling 3, 15-41.
    • (2003) Statistical Modeling , vol.3 , pp. 15-41
    • Yee, T.W.1    Hastie, T.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.